77777

First answer is
Instructor(s): N. Sicorrect answer

(1) 400 m

(2) 300 m

PHYSICS DEPARTMENT Exam 1

77777

PHY 2004		Exam 1		September 22, 2010
Name (print, last first):			Signature:	
On my ho	onor, I have neith	er given nor received una	uthorized aid on this e	examination.
 Code your test numb Code your name on you answer sheet. Print your name on this Do all scratch work any test, this exam printout Blacken the circle of 	er on your answer answer sheet. It is sheet and sign it where on this exact is to be turned in factor your intended or some answers med off. Choose the	also. m that you like. Circle in No credit will be given answer completely, unay be counted as incorreclosest to exact. There is	80 on the answer sh COMPLETELY. Co your answers on the without both answer using a #2 pencil of ct.	de your UFID number on your etest form. At the end of the sheet and printout. r blue or black ink. Do not
		$g = 9.80 \text{ m/s}^2$		
1. A ball is thrown up vert	tically at 20 m/s.	How high will the ball go	o?	
(1) 20.4 m	(2) 40.8 m	(3) 5.1 m	(4) 2 m	(5) 7.1 m
2. Jane sets out on a walk	. She walks 5 km	east and then 12 km nor	th. How far is she from	n her starting point?
(1) 13 km	(2) 17 km	(3) 7 km	(4) 12 km	(5) 5 km
3. A stone is dropped from the water?	a bridge. It hits	the water 3 seconds after	it is dropped. What is	s the height of the bridge above
(1) 44.1 m	(2) 22 m	(3) 10.5 m	(4) 66 m	(5) 5.5 m
0.75. At what angle (in		l plane. The coefficient on block be raised before (3) 89°		en the block and the surface is $(5) 45^{\circ}$
forward direction at 4 n	n/s^2 . What is its	a speed of 5 m/s. At t net displacement after 42	ime $t = 0$ the automore of acceleration? (In	obile begins accelerating in the other words, if $X_I = 0$, what is
the value of X_F at $t = 4$ (1) 12 m	4s?) (2) 9 m	(3) 6 m	(4) 3 m	(5) 0 m
moment the car begins	to accelerate in th		rate of 2 m/s^2 , and the	n/s passes the cruiser. At this e cruiser begins to accelerate in the car?

(3) 200 m

(4) 100 m

(5) 500 m

- 7. An astronaut wants to measure the acceleration of gravity on planet X. On Earth her powerful dart gun will shoot a dart a maximum horizontal distance of 30 m before the dart returns to the same height from which it was shot. She performs the same experiment on planet X, and finds that the dart gun shoots the dart a maximum distance of 45 m. What is the value of the acceleration due to gravity on Planet X?
 - $(1) 6.5 \text{ m/s}^2$
- $(2) 3.8 \text{ m/s}^2$
- $(3) 9.8 \text{ m/s}^2$
- (4) 12.4 m/s^2 (5) 15.9 m/s^2
- 8. A 0.02 kg bullet initially traveling at 500 m/s imbeds itself in a 2 kg block. What is the kinetic energy of the block immediately after the collision?
 - (1) 24.5 J
- (2) 19.8 J
- (3) 15.6 J
- (4) 33.4 J
- (5) 8.3 J