Spring 2023 CHM2045 Exam 1 Review Solutions

The material covered is from chapters 1-4

1. The two most abundant isotopes of chlorine are ³⁵Cl (34.99 amu) and ³⁷Cl (36.99 amu). What are their percent abundances? (Hint: Use value from periodic table) > <1 = 35.45 annu

- 35.45 = 34.99(1-x) + 36.99xa) ³⁵Cl is 37%; ³⁷Cl is 63% 35.45 = 34.99 -34.91x + 56.99x b) ³⁵Cl is 23%; ³⁷Cl is 77% c) ³⁵Cl is 77%; ³⁷Cl is 23% d) ³⁵Cl is 63%; ³⁷Cl is 37% e) ³⁵Cl is 50%; ³⁷Cl is 50%
- 2. Given the name of the compound, write its molecular formula.
 - a) Vanadium (v) nitride: $\sqrt[4]{8}$ $\sqrt[8]{8}$ $\sqrt[8]{8}$ V₃N₅
 b) Iron (i) nitrate: $\sqrt[6]{8}$ $\sqrt[8]{8}$ FeNO₃

 - c) Tin (iv) fluoride: ⊊"(ç") → su⊊ → SnF4

 - d) Copper (ii) phosphate $\{c_{\iota_{a}}^{2}/(\rho_{a})\} \rightarrow \frac{\text{Cu}_{3}(\text{PO}_{4})_{2}}{\text{NH}_{4})_{2}\text{Cr}_{2}\text{O}_{7}}$ e) Ammonium dichromate: $(\text{NH}_{4})/(\rho_{a}\rho_{a})^{2} \rightarrow (\text{NH}_{4})_{2}\text{Cr}_{2}\text{O}_{7}$
- 3. What are the moles of each ion and the number of each atom in 78.5 g of aluminum sulfate?
- V. $2.76*10^{23}$ atoms Al I. $0.241 \text{ mol Al}^{3+}$ IX. $1.66*10^{24}$ atoms O $5.47*10^{24}$ atoms Al 9.32*10²³ atoms O $0.459 \text{ mol Al}^{3+}$ II. VII. $4.14*10^{23}$ atoms S $0.987 \text{ mol SO}_4^{2-}$ III. 6.3510²⁵ atoms S IV. $0.688 \text{ mol SO}_4^{2-}$ VIII.
 - (78.5g Alz(504)3) (100/ Alz (504)3 \ 2 mol A(34) = 0.459 no | Al37 \ 242.15 q Alz(24)3 \ (100/ Al362)3 a) II, IV, V, VII, IX

4. You have a concentrated stock solution of HCl. The concentration is 8.2 M and there is 1.5 L of stock solution. 752 mL of stock solution are taken and diluted to 1.2 L in a volumetric flask. 65 mL of this new solution are taken and diluted to 125 mL in another volumetric flask. What is the final concentration?

5. Given a volume of 60 mL and a concentration of 0.925 M of hydrobromic acid, how many mols of HBr are there and what is the mass of HBr? a) 0.91 mol, 7.1 g (60 mL) (0.925 mol HBr) = 0.056 mol HBr
a) $0.91 \text{ mol}, 7.1 \text{ g}$ b) $0.056 \text{ mol}, 4.5 \text{ g}$ c) $0.014 \text{ mol}, 9.1 \text{ g}$ d) $6.2 \text{ mol}, 32.1 \text{ g}$ e) $8.4 \text{ mol}, 65.4 \text{ g}$
6. Write the balanced molecular and net ionic equations for the combination of silver nitrate and sodium chromate. As $M_3 + M_2 C O_4 \rightarrow A_5^+ C O_4^2 + N_5^4 N O_5$ Molecular Equation: 24 $M_3 + M_2 C O_4 \rightarrow M_2 C O_4 $
$2AgNO_3 (aq) + Na_2CrO_4 (aq) -> Ag_2CrO_4 (s) + 2 NaNO_3 (aq)$
Net Ionic Equation: no speckfor ions ->2/5++2/1/5-+2/1/4+642> Azz 6-210)+2/1/4+2/1/5
$2 \text{ Ag}^+(\text{aq}) + \text{CrO}_4^-(\text{aq}) -> \text{Ag}_2\text{CrO}_4(\text{s})$
7. Given 2.68 mol of strontium phosphate, what are the mols of phosphate ion in 689 mL? a) 9.81 mol b) 4.38 mol c) 7.78 mol d) 2.43 mol e) 6.75 mol e) 6.75 mol
8. Gypsum is a common hydrate salt. It has the general formula CaSO ₄ • xH ₂ O. If the molar mass of gypsum is 172.17 g/mol, what is x? a) 1 b) 2 c) 3 d) 4 $CaSQ_{1} = 136.14$ g/mol e) 5 $CaSQ_{1} = 136.14$ label and label and label are salt. It has the general formula CaSO ₄ • xH ₂ O. If the molar mass of gypsum is 172.108 g/mol $CaSQ_{2} = 10.078$ g/mol $CaSQ_{3} = 10.078$ g/mol $CaSQ_{4} = 10.078$ g/mol C
9. What is the mass of CO ₂ if 8.2g of nonene (C ₉ H ₁₈) and 20g of O ₂ are combusted? And which is the limiting reactant? a) Nonene, 23g b) O ₂ , 16g $ 2 \left(\frac{1}{2} + \frac{12}{2} O_2 \longrightarrow \frac{1}{2} O_2 + \frac{9}{12} O_2 \longrightarrow \frac{1}{2} O_2 + \frac{18}{12} O_2 \longrightarrow \frac{18}{2} O_2 \rightarrow \frac{18}{2} O_2 $

c) Nonene, 25gd) O₂, 18ge) O₂, 27g

10. Write the balanced molecular and net ionic equations of NaI and Pb(NO3)2.

$$2\mu_0 I + \rho_0 (\nu_0)_2 \rightarrow 2\mu_0 \nu_0 + \rho_0 I_2 \qquad \mu_0 I_3 - \rho_0 I_4 \nu_0 I_3$$

Molecular Equation:

$$2NaI(aq) + Pb(NO_3)_2(aq) -> 2NaNO_3(aq) + PbI_2(s)$$

Net Ionic Equation:

$$Pb^{2+}$$
 (aq) + 2I⁻ (aq) -> PbI_2 (s)

11. What is the mass of V(OH)₅ formed 624 mL of 0.389 M VCl₅ reacts with 893 mL of 0.651 M

11. What is the mass of V(OH)s formed 624 mL of 0.389 M VCls reacts with 893 mL of 0.651 M of Ca(OH)₂?
$$VCl_5 + CaOH)_2 \rightarrow V(OH)_5 + CaOL_2$$

a. $30.6g$ $2 \begin{pmatrix} VVV \\ CIRIO \end{pmatrix} 5 \begin{pmatrix} Ca + 5 \\ OU & 2 & 0 \end{pmatrix} 2 \begin{pmatrix} VV+2 \\ OHS & 0 \end{pmatrix} 2 \begin{pmatrix} VVL_5 \\ OHS & 0 \end{pmatrix} 2$

12. Using the question 11's chemical reaction, how many mL are left over of the excess reactant?

a.
$$30\text{mL} \frac{(493\text{mL})(\frac{1}{1000\text{mL}})}{(\frac{1}{1000\text{mL}})(\frac{1}{1000\text{mL}})(\frac{1}{1000\text{mL}})}{(\frac{1}{1000\text{mL}})(\frac{1}{1000\text{mL}})(\frac{1}{1000\text{mL}})(\frac{1}{1000\text{mL}})} = 597.78\text{ mL}$$

b. 90mL

c. 512mL

d. 26mL

e. 410mL

leftover

13. Balance and identify the type of reaction, oxidizing agent, and reducing agent of each

equation:
$$N_2O_5 \rightarrow NO_2 + O_2$$
 $2 V_2O_5 \rightarrow 4 NO_2 + O_2$ $2 V_2O_5 \rightarrow 4 NO_2 + O_2$

Decomposition reaction; Oxidizing Agent is N₂O₅, Reducing Agent is N₂O₅

Decomposition reaction; Oxidizing Agent is N₂O₅, Reducing Agent is N₂O
$$S_8 + F_2 -> SF_4$$

$$S_8 + 16F_2 -> 8SF_4$$

$$S_8 + 16F_2 -> 8SF_4$$

$$S_8 + 16F_2 -> 8SF_4$$

Combination reaction; Oxidizing Agent is F₂, Reducing Agent is S₈

$$2C_{5}I + Cl_{2} \rightarrow 2C_{5}Cl + I_{2}$$

$$CsI + Cl_{2} \rightarrow CsCl + I_{2}$$

$$2C_{5}I + Cl_{2} \rightarrow 2C_{5}Cl + I_{2}$$

$$2C_{5}I + Cl_{2} \rightarrow 2C_{5}Cl + I_{2}$$

Displacement reaction; Oxidizing Agent is Cl₂, Reducing Agent is CsI

In C_7H_{14} , C=-2 H=+1; In O_2 , O=0; In CO_2 , C=+4, O=-2; In H_2O , H=+1, O=-2 $C_7H_{14} + 21 O_7 \Rightarrow |A|CO_2 + |A|H_2O$ Oxidizing Agent: O_2 Reducing Agent: C_7H_{14}

- 20. What is the empirical formula of a compound that is 40% C, 6.71% H, and 53.3% O? What is the molecular formula given that the molar mass is 240.24 g/mol?
 - a. CH_2O ; $C_9H_{18}O_9$ b. C_2HO ; $C_{16}H_8O_8$ c. CH_2O ; $C_8H_{16}O_8$ d. CHO_2 ; $C_9H_9O_{18}$ e. CH_2O ; $C_6H_{12}O_6$ $240_5C_{16}H_{16}O_8

 C. <math>CH_2O$; $C_8H_{16}O_8$ $\frac{(6.75)(\frac{|\omega|}{|z|})(\frac{|\omega|}{|z|})}{(6.3090)} = 3.33 \text{mal}(0.57)}$ $\frac{(6.75)(\frac{|\omega|}{|z|})}{(6.3090)} = 3.33 \text{mal}(0.57)}$ $\frac{(6.75)(\frac{|\omega|}{|z|})}{(6.3090)} = 3.33 \text{mal}(0.57)}$ $\frac{(6.75)(\frac{|\omega|}{|z|})}{(6.3090)} = 3.33 \text{mal}(0.57)$ $\frac{(6.75)(\frac{|\omega|}{|z|})}{(6.3090)} = 3.$