Spring 2023 CHM2045 Exam 1 Review Solutions

The material covered is from chapters 1-4

1. The two most abundant isotopes of chlorine are ${ }^{35} \mathrm{Cl}$ (34.99 amu) and ${ }^{37} \mathrm{Cl}(36.99 \mathrm{amu})$. What are their percent abundances? (Hint: Use value from periodic table) $\rightarrow C 1=35.45$ amu
a) ${ }^{35} \mathrm{Cl}$ is $37 \% ;{ }^{37} \mathrm{Cl}$ is 63%
b) ${ }^{35} \mathrm{Cl}$ is $23 \% ;{ }^{37} \mathrm{Cl}$ is 77%
c) ${ }^{35} \mathrm{Cl}$ is $77 \% ;{ }^{37} \mathrm{Cl}$ is 23%
d) ${ }^{35} \mathrm{Cl}$ is $63 \% ;{ }^{37} \mathrm{Cl}$ is 37%
e) ${ }^{35} \mathrm{Cl}$ is $50 \% ;{ }^{37} \mathrm{Cl}$ is 50%

2. Given the name of the compound, write its molecular formula.
a) Vanadium (v) nitride: $\stackrel{\substack{v^{54} \\ v_{2} N_{5}^{3-} \\ N_{5}^{2-}}}{N_{5}} \rightarrow \mathrm{~V}_{3} \mathrm{~N}_{5}$
b) Iron (i) nitrate: $\mathrm{Fe}^{+} \mathrm{w}_{3}^{-} \xrightarrow{+\mathrm{H}^{-+\infty}} \mathrm{FeNO}_{3}$
c) Tin (iv) fluoride: $\left.\mathrm{Sa}^{4(4)} \mathrm{F}_{4}^{-}\right) \rightarrow \mathrm{SF}_{4} \rightarrow \mathrm{SnF}_{4}$
d) Copper (ii) phosphate $\left(c_{2}^{2 r}\left(\cos ^{3}\right) \rightarrow \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right.$
e) Ammonium dichromate: $\underset{\substack{\left(\mathrm{NH}_{4}\right) \mathrm{cerar}_{2} \mathrm{O}_{2}^{-}}}{2}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
3. What are the moles of each ion and the number of each atom in 78.5 g of aluminum sulfate?
I. $0.241 \mathrm{~mol} \mathrm{Al}^{3+} \quad$ V. $2.76 * 10^{23}$ atoms Al IX. $1.66 * 10^{24}$ atoms O
II. $\quad 0.459 \mathrm{~mol} \mathrm{Al}^{3+}$
VI. $5.47 * 10^{24}$ atoms Al X. $9.32 * 10^{23}$ atoms O
III. $\quad 0.987 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}$
VII. $\quad 4.14 * 10^{23}$ atoms S
IV. $0.688 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}$
VIII. $\quad 6.3510^{25}$ atoms S
a) II, IV, V, VII, IX

c) I, II, IV, VI, VIII, X
$)\left(\frac{602 \times 10^{20} \mathrm{sen}}{1 \mathrm{~mol}^{2}}\right)=4.14 \times 10^{23} \mathrm{c}, \operatorname{pons} 5$
e) None of the above
4. You have a concentrated stock solution of HCl . The concentration is 8.2 M and there is 1.5 L of stock solution. 752 mL of stock solution are taken and diluted to 1.2 L in a volumetric flask. 65 mL of this new solution are taken and diluted to 125 mL in another volumetric flask. What is the final concentration?
a) 2.7 M
b) 6.2 M
c) 8.2 M
d) 3.4 M
e) 4.5 M
5. Given a volume of 60 mL and a concentration of 0.925 M of hydrobromic acid, how many mols of HBr are there and what is the mass of HBr ?
a) $0.91 \mathrm{~mol}, 7.1 \mathrm{~g} \quad(60 \mathrm{~mL})\left(\frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}\right)\left(\frac{0.925 \mathrm{md} 1 \mathrm{HBr}}{1 \mathrm{~L}}\right)=0.056 \mathrm{~mm} 1 \mathrm{HB}$
b) $0.056 \mathrm{~mol}, 4.5 \mathrm{~g}$
c) $0.014 \mathrm{~mol}, 9.1 \mathrm{~g}$
d) $6.2 \mathrm{~mol}, 32.1 \mathrm{~g}$
e) $8.4 \mathrm{~mol}, 65.4 \mathrm{~g}$
6. Write the balanced molecular and net ionic equations for the combination of silver nitrate and $\left.\begin{array}{l}\text { sodium } \\ \mathrm{Na}^{+} \\ \mathrm{CrO}_{4}^{2-} \rightarrow \mathrm{Na}_{4} \mathrm{COO}_{4}\end{array} \mathrm{AgNO}_{3}+\mathrm{Na}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{Ag}^{+} \mathrm{CrO}_{4}^{2-}+\mathrm{Na}^{+} \mathrm{NO}_{3}^{-} \quad 2 \mathrm{Ag}_{3}+\mathrm{Na}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{Ag}_{2} \mathrm{CO}_{4}+2 \mathrm{Na}_{9} \mathrm{NO}_{3} \mathrm{Na}_{2}\right) \quad \mathrm{Ag}^{+} \mathrm{NO}_{3}^{-} \rightarrow \mathrm{ANO}_{3}$ Molecular Equation:

$2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{aq})->\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(\mathrm{aq})$

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CrO}_{4}^{-}(\mathrm{aq})->\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})
$$

7. Given 2.68 mol of strontium phosphate, what are the mols of phosphate ion in 689 mL ?
a) 9.81 mol

$$
\mathrm{Sr}^{2+}+\overline{\left(\mathrm{P}_{0} \mathrm{PO}_{4}^{3-}\right.} \rightarrow \mathrm{Sr}_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

b) 4.38 mol

$$
\frac{2.68 \mathrm{ndd} \mathrm{Sr}_{3}\left(\mathrm{COO}_{4}\right)_{2}}{\left(68^{9} \mathrm{mc}\right)\left(\frac{11}{1000 \mathrm{mu}}\right)}=3.89 \mathrm{MSS}_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

c) 7.78 mol
d) 2.43 mol
e) 6.75 mol
8. Gypsum is a common hydrate salt. It has the general formula $\mathrm{CaSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}$. If the molar mass of gypsum is $172.17 \mathrm{~g} / \mathrm{mol}$, what is x ?
a) $1 \quad\left(C_{a}=40.078 \mathrm{~g}(\mathrm{~mol}) \times 1\right.$

$$
\mathrm{H}_{2} \mathrm{O} \Rightarrow \frac{\begin{array}{c}
H=1.008 \text { glnol } \times 2 \\
0=16 \mathrm{glnol}
\end{array}}{18.016 \mathrm{glnol}} \quad x=2
$$

b) $2 \quad(S=32.06 \mathrm{~g}(\mathrm{~mol}) \mathrm{xl}$

c) 3
d) $4 \quad C_{a} S q_{1}=136.14$ glumo

e) 5
9. What is the mass of CO_{2} if 8.2 g of nonene $\left(\mathrm{C}_{9} \mathrm{H}_{18}\right)$ and 20 g of O_{2} are combusted? And which is the limiting reactant? $\quad 2\left(\mathrm{C}_{9} \mathrm{H}_{\mathrm{B}}+2 \frac{2}{2} \mathrm{O}_{2} \rightarrow 9 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}\right) \rightarrow 2 \mathrm{CaH}_{18}+27 \mathrm{O}_{2} \rightarrow 18 \mathrm{CO}_{2}+18 \mathrm{H}_{2} \mathrm{O}$
a) Nonene, 23 g
b) $\mathrm{O}_{2}, 16 \mathrm{~g}$
c) Nonene, 25 g
d) $\mathrm{O}_{2}, 18 \mathrm{~g}$
e) $\mathrm{O}_{2}, 27 \mathrm{~g}$

10. Write the balanced molecular and net ionic equations of NaI and $\mathrm{Pb}(\mathrm{NO} 3) 2$.

Molecular Equation:

$$
2 \mathrm{NaI}^{2}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{NaNO}_{3}+\mathrm{PbI}_{2} \quad \mathrm{Na}_{2}^{+} \mathrm{I}^{-} \mathrm{Pb}^{2+} \mathrm{NO}_{3}^{2}
$$

$$
2 \mathrm{NaI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})->2 \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{PbI}_{2}(\mathrm{~s})
$$

Net Ionic Equation:
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{I}^{-}(\mathrm{aq})->\mathrm{PbI}_{2}(\mathrm{~s})$
11. What is the mass of $\mathrm{V}(\mathrm{OH})_{5}$ formed 624 mL of $0.389 \mathrm{M} \mathrm{VCl}_{5}$ reacts with 893 mL of 0.651 M of $\mathrm{Ca}(\mathrm{OH})_{2}$? $\left.V \mathrm{Cl}_{5}+\mathrm{Ca}_{5} \mathrm{Of}\right)_{2} \rightarrow V(\mathrm{OH})_{5}+\mathrm{CaCl}_{2}$

b. 98.2 g

12. Using the question 11 's chemical reaction, how many mL are left over of the excess reactant?
a. 30 mL

b. 90 mL
c. 512 mL

d. 26 mL
e. 410 mL

13. Balance and identify the type of reaction, oxidizing agent, and reducing agent of each equation:
$\mathrm{N}_{2} \mathrm{O}_{5}->\mathrm{NO}_{2}+\mathrm{O}_{2}$

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2} \\
& 2 \begin{array}{c}
\mathrm{N} 2^{4} \\
\mathrm{O} 810
\end{array} \left\lvert\, \begin{array}{ll}
\mathrm{N} x^{4} & 028
\end{array} \mathrm{O}_{2}\right.
\end{aligned}
$$

Decomposition reaction; Oxidizing Agent is $\mathrm{N}_{2} \mathrm{O}_{5}$, Reducing Agent is $\mathrm{N}_{2} \mathrm{O}_{5}$
$\mathrm{S}_{8}+\mathrm{F}_{2}->\mathrm{SF}_{4}$

$$
\begin{aligned}
& S_{8}+F_{2} \rightarrow \underset{F_{32}}{S F_{4}} \\
& 58\left(16 F_{2}\right. \\
& 8+1 \\
& 8+32
\end{aligned}
$$

$\mathrm{S}_{8}+16 \mathrm{~F}_{2}->8 \mathrm{SF}_{4}$

Combination reaction; Oxidizing Agent is F_{2}, Reducing Agent is S_{8}

Displacement reaction; Oxidizing Agent is Cl_{2}, Reducing Agent is PsI
14. Given the reaction $\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2}->\mathrm{Fe}+\mathrm{H}_{2} \mathrm{O}$, if $0.250 \mathrm{~g} \mathrm{H}_{2}$ makes 1.49 g of $\mathrm{H}_{2} \mathrm{O}$, what is the percent yield? Logier actual $\frac{\text { hereatal }}{x 00 \%} \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{H}_{2} \rightarrow \mathrm{Fe}+\mathrm{H}_{2} \mathrm{O}$
$\begin{aligned} & \text { a. } 52.3 \% \\ & \text { b. } 66.7 \% \\ & \text { c. } 95.2 \%\end{aligned} \frac{1.49}{2.23} \times \cos \%=6(0.7 \%$ 叔 3

15. Given $7.13 * 10^{19} \mathrm{Ca}$ atoms, what is the mass of calcium in grams? $\quad \mathrm{Ca}=40.078 \mathrm{gland}$
a. $5.23 * 10^{-3}$
b. $6.35^{*} 10^{-3}$
c. $4.74 * 10^{-3}$

$$
\left(7.13 \times 10^{19} \mathrm{Ca} \text { atoms }\right)\left(\frac{1 \mathrm{~mol}}{\left.6.022 \times 10^{23 \mathrm{arms}}\right)}\right)\left(\frac{40.078 \mathrm{~g} \mathrm{Ca}}{\operatorname{lnod} \mathrm{Ca}}\right)=0.00474 \mathrm{~g} \mathrm{Ca}
$$

d. $9.24 * 10^{-3}$
e. $4.93 * 10^{-3}$

$$
4.74 \times 10^{-3} \mathrm{~g} \mathrm{Ca}
$$

16. Given 1 mol , what is the mass percent of each element in $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$?
muss $z_{0}=\frac{g \text { element }}{g \text { mideule }}$
I. $60 \% \mathrm{C}$
III. $\quad 6.7 \% \mathrm{H}$
V. 31.6 \% O
II. $40 \% \mathrm{C}$
IV. $8.4 \% \mathrm{H}$
VI. $\quad 53.3 \% \mathrm{O}$
a. I, IV, VI
b. II, IV, VI

c. I, IV, V
d. II, III, VI
e. II, IV, V

17. What volume of 0.6143 M of strontium hydroxide would neutralize 72.59 mL of a 0.8291 M solution of hydrochloric acid? $\mathrm{Sr}^{2+} \mathrm{OH}^{-} \mathrm{HCC}^{+}$
a. 62.43 mL
b. 48.99 mL
c. 75.12 mL
d. 36.25 mL
e. 95.13 mL
18. An unknown metal M reacts with sulfur to make $\mathrm{M}_{2} \mathrm{~S}_{3}$. If 1.62 g of M reacts with 2.88 g of sulfur, what is M and the name of $\mathrm{M}_{2} \mathrm{~S}_{3}$?
a. V; vanadium (iii) sulfide
b. Fe; iron (iii) sulfide
c. Au; gold (iii) sulfide
d. Al; aluminum sulfide
e. Cr ; chromium (iii) sulfide

$$
\begin{aligned}
& S=2^{-} \therefore \quad M_{13} S_{3} \quad M=+3
\end{aligned}
$$

$$
\begin{aligned}
& (2.88 \mathrm{~g} 5)\left(\frac{(\mathrm{mol} 15}{32.06 \mathrm{~g}}\right)=0.0898 \mathrm{mols} \\
& (0.0888 \mathrm{mls})\left(\frac{2 \mathrm{mil} / \mathrm{M}}{3 \mathrm{mols}}\right)=0.0599 \mathrm{mal} \mu \\
& \frac{1.62 \mathrm{~g} \mu}{0.0599 \mathrm{~mol}^{1} \mu}=\frac{26.982 \mathrm{~g} / \mathrm{mol}}{\mathrm{Al}^{+}} \\
& \therefore \quad M=A l \\
& \mathrm{Al}_{2} \mathrm{~S}_{3} \text { is Aluminum sulfide }
\end{aligned}
$$

19. Balance the equation and identify the oxidation numbers, oxidizing agent, and reducing agent for the combustion of $\mathrm{C}_{7} \mathrm{H}_{14}$.

$$
2 \mathrm{C}_{7} \mathrm{H}_{14}+21 \mathrm{O}_{2}->14 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}
$$

In $\mathrm{C}_{7} \mathrm{H}_{14}, \mathrm{C}=-2 \mathrm{H}=+1$; In $\mathrm{O}_{2}, \mathrm{O}=0$; In $\mathrm{CO}_{2}, \mathrm{C}=+4, \mathrm{O}=-2$; In $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}=+1, \mathrm{O}=-2$
Oxidizing Agent: O_{2}

Reducing Agent: $\mathrm{C}_{7} \mathrm{H}_{14}$
20. What is the empirical formula of a compound that is $40 \% \mathrm{C}, 6.71 \% \mathrm{H}$, and $53.3 \% \mathrm{O}$? What is the molecular formula given that the molar mass is $240.24 \mathrm{~g} / \mathrm{mol}$?
a. $\mathrm{CH}_{2} \mathrm{O} ; \mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{9}$

$$
\begin{aligned}
& \mathrm{HOg} \mathrm{C}, 6.7 \mathrm{gH}, 53.3 \mathrm{~g} \mathrm{O} \quad \mathrm{Cx}_{\mathrm{x}} \mathrm{H}_{\mathrm{z}} \mathrm{O}^{2} \\
& (40 \mathrm{gc})\left(\frac{\mathrm{mpolc}}{12.1 \mathrm{~g} \mathrm{c}}\right)=3.33 \mathrm{~mol} \mathrm{C}=x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{240.24 \mathrm{glmol}}{30.03 \mathrm{~g} \operatorname{lol} 1}=8 \\
& 8\left(\mathrm{C}_{1} \mathrm{H}_{2} \mathrm{O}_{1}\right) \rightarrow \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{8}
\end{aligned}
$$

b. $\mathrm{C}_{2} \mathrm{HO} ; \mathrm{C}_{16} \mathrm{H}_{8} \mathrm{O}_{8}$
c. $\mathrm{CH}_{2} \mathrm{O} ; \mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{8}$
d. $\mathrm{CHO}_{2} ; \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{18}$
e. $\mathrm{CH}_{2} \mathrm{O} ; \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

