Spring 2023 CHM2045 Exam 1 Review Answer Key

The material covered is from chapters 1-4

- 1. The two most abundant isotopes of chlorine are ³⁵Cl (34.99 amu) and ³⁷Cl (36.99 amu). What are their percent abundances? (Hint: Use value from periodic table)
 - a) ³⁵Cl is 37%; ³⁷Cl is 63%
 - b) ³⁵Cl is 23%; ³⁷Cl is 77%
 - c) ³⁵Cl is 77%; ³⁷Cl is 23%
 - d) ³⁵Cl is 63%; ³⁷Cl is 37%
 - e) ³⁵Cl is 50%; ³⁷Cl is 50%
- 2. Given the name of the compound, write its molecular formula.

a) Vanadium (v) nitride: V₃N₅

b) Iron (i) nitrate: FeNO₃

c) Tin (iv) fluoride: SnF₄

d) Copper (ii) phosphate: Cu₃(PO₄)₂

e) Ammonium dichromate: (NH₄)₂Cr₂O₇

3. What are the moles of each ion and the number of each atom in 78.5 g of aluminum sulfate?

I. $0.241 \text{ mol Al}^{3+}$ V. $2.76*10^{23} \text{ atoms Al}$ IX. $1.66*10^{24} \text{ atoms O}$

II. $0.459 \text{ mol Al}^{3+}$ VI. $5.47*10^{24} \text{ atoms Al}$ X. $9.32*10^{23} \text{ atoms O}$ III. $0.987 \text{ mol SO}_4^{2-}$ VII. $4.14*10^{23} \text{ atoms S}$

III. $0.987 \text{ mol SO}_4^{2-}$ VII. $4.14*10^{23} \text{ atoms S}$ IV. $0.688 \text{ mol SO}_4^{2-}$ VIII. $6.3510^{25} \text{ atoms S}$

- a) II, IV, V, VII, IX
- b) I, III, VI, VIII, X
- c) I, II, IV, VI, VIII, X
- d) II, III, V, VII, IX
- e) None of the above
- 4. You have a concentrated stock solution of HCl. The concentration is 8.2 M and there is 1.5 L of stock solution. 752 mL of stock solution are taken and diluted to 1.2 L in a volumetric flask. 65 mL of this new solution are taken and diluted to 125 mL in another volumetric flask. What is the final concentration?
 - a) 2.7 M
 - b) 6.2 M
 - c) 8.2 M
 - d) 3.4 M
 - e) 4.5 M

- 5. Given a volume of 60 mL and a concentration of 0.925 M of hydrobromic acid, how many mols of HBr are there and what is the mass of HBr?
 a) 0.91 mol, 7.1 g
 b) 0.056 mol, 4.5 g
 c) 0.014 mol, 9.1 g
 d) 6.2 mol, 32.1 g
- 6. Write the balanced molecular and net ionic equations for the combination of silver nitrate and sodium chromate.

Molecular Equation:

e) 8.4 mol, 65.4 g

$$2AgNO_3(aq) + Na_2CrO_4(aq) -> Ag_2CrO_4(s) + 2 NaNO_3(aq)$$

Net Ionic Equation:

$$2 \text{ Ag}^+(\text{aq}) + \text{CrO}_4^-(\text{aq}) -> \text{Ag}_2\text{CrO}_4(\text{s})$$

- 7. Given 2.68 mol of strontium phosphate, what are the mols of phosphate ion in 689 mL?
 - a) 9.81 mol
 - b) 4.38 mol
 - c) 7.78 mol
 - d) 2.43 mol
 - e) 6.75 mol
- 8. Gypsum is a common hydrate salt. It has the general formula $CaSO_4 \cdot xH_2O$. If the molar mass of gypsum is 172.17 g/mol, what is x?
 - a) 1
 - b) 2
 - c) 3
 - d) 4
 - e) 5
- 9. What is the mass of CO_2 if 8.2g of nonene (C_9H_{18}) and 20g of O_2 are combusted? And which is the limiting reactant?
 - a) Nonene, 23g
 - b) O₂, 16g
 - c) Nonene, 25g
 - d) O₂, 18g
 - e) O_2 , 27g

10. Write the balanced molecular and net ionic equations of NaI and Pb(NO3)2.

Molecular Equation:

$$2NaI(aq) + Pb(NO_3)_2(aq) -> 2NaNO_3(aq) + PbI_2(s)$$

Net Ionic Equation:

$$Pb^{2+}$$
 (aq) + $2I^{-}$ (aq) -> PbI_2 (s)

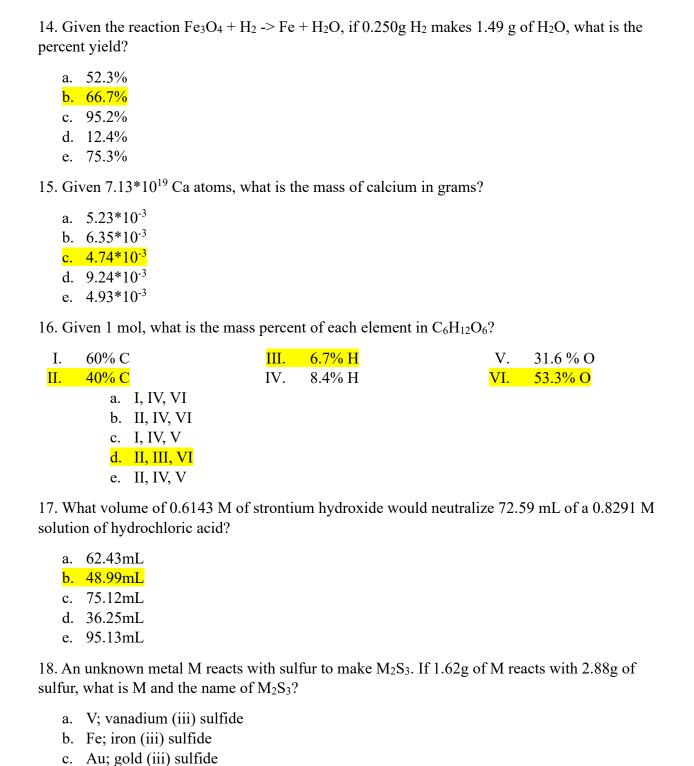
- 11. What is the mass of V(OH)₅ formed 624 mL of 0.389 M VCl₅ reacts with 893 mL of 0.651 M of Ca(OH)₂?
 - a. 30.6g
 - b. 98.2g
 - c. 33.0g
 - d. 74.6g
 - e. 31.6g
- 12. Using the question 11's chemical reaction, how many mL are left over of the excess reactant?
 - a. 30mL
 - b. 90mL
 - c. 512mL
 - d. 26mL
 - e. 410mL
- 13. Balance and identify the type of reaction, oxidizing agent, and reducing agent of each equation:

$$N_2O_5 -> NO_2 + O_2$$

$$2N_2O_5 -> 4NO_2 + O_2$$

Decomposition reaction; Oxidizing Agent is N₂O₅, Reducing Agent is N₂O₅

$$S_8 + F_2 -> SF_4$$


$$S_8 + 16F_2 -> 8SF_4$$

Combination reaction; Oxidizing Agent is F₂, Reducing Agent is S₈

$$C_{S}I + Cl_{2} -> C_{S}Cl + I_{2}$$

$$2CsI + Cl_2 -> 2CsCl + I_2$$

Displacement reaction; Oxidizing Agent is Cl₂, Reducing Agent is CsI

d. Al; aluminum sulfide e. Cr; chromium (iii) sulfide 19. Balance the equation and identify the oxidation numbers, oxidizing agent, and reducing agent for the combustion of C_7H_{14} .

$$2 C_7 H_{14} + 21 O_2 \rightarrow 14 CO_2 + 14 H_2 O_2$$

Oxidizing Agent: O₂

Reducing Agent: C7H14

- 20. What is the empirical formula of a compound that is 40% C, 6.71% H, and 53.3% O? What is the molecular formula given that the molar mass is 240.24 g/mol?
 - a. CH₂O; C₉H₁₈O₉
 - b. C₂HO; C₁₆H₈O₈
 - c. CH₂O; C₈H₁₆O₈
 - d. CHO2; C9H9O18
 - e. CH₂O; C₆H₁₂O₆