Review for MAC 1140 Exam 2 Spring 2011

1. Solve the following inequalities:
(a) $2 x+5 \leq 4+3 x$
(b) $-3<1-2(x+5) \leq 5$
(c) $2+|2-x| \geq 0$
(d) $4-\frac{8}{3}\left|\frac{2 x-3}{4}+\frac{1}{2}\right|>0$
(ans: a. $[1, \infty)$, b. $[-7,-3)$, c. $(-\infty, \infty)$, d. $\left(-\frac{5}{2}, \frac{7}{2}\right)$)
2. Find x so that the distance between the points $(x, 3)$ and $(-3,5)$ is 5 . (ans: $x=-3 \pm \sqrt{21}$)
3. Find the center C and radius r of the circle $3 x^{2}+3 y^{2}+12 x-6 y=1$. (ans: $C(-2,1)$ and $r=\frac{4 \sqrt{3}}{3}$)
4. Find (a) the standard form and (b)the general form of the equations of the circle whose 2 end points of a diameter are $(1,-2),(9,6)$. (ans: $\left.(x-5)^{2}+(y-2)^{2}+32, x^{2}-10 x+y^{2}-4 y-3=0\right)$
5. Find (a) the standard form and (b)the general form of the equations of the circle whose center is $(-1,-1)$ with radius 3 .
(ans: $\left.(x+1)^{2}+(y+1)^{2}=9, x^{2}+2 x+y^{2}+2 y-7=0\right)$
6. Find (a) the standard form and (b)the general form of the equations of the circle with center $(5,-3)$ passing through $(1,0)$.

$$
\text { (ans: } \left.(x-5)^{2}+(y+3)^{2}=25\right)
$$

7. Which of the following functions are even, odd or neither?

Any symmetry?

$$
\begin{aligned}
& f(x)=|x-3|, \quad g(x)=|x|-3, \quad h(x)=x-3, \quad p(x)=(x-3)^{2}+3 \\
& q(x)=\frac{1}{\sqrt{x^{2}+5}}, \quad k(x)=x^{3}-2 x^{2}, \quad l(x)=x^{4}-x^{2}, \quad r(x)=x^{3}+x^{5} . \\
& f_{1}(x)=4 x^{4}-2 x^{2}+1, f_{2}(x)=3 x^{5}+5 x^{3}+1 .
\end{aligned}
$$

(ans: Even: g, l, q, f_{1}; Odd: r; Neither: f, h, p, k, l, f_{2}).
8. Given 2 points $A(-3,5), B(3,-2)$ on the line.
(a) Find the midpoint M and the length of the segment $A B$.
(b) Determind whether the point $(69,-79)$ is on the line passing through the points A and B.
(ans. $M=(0,3 / 2) ; d(A B)=\sqrt{85}$, yes.)
9. Find the equation of the line passing through $(-6,-3)$ that is parallel to the line through $(-1,2)$ and $\left(\frac{1}{2}, 4\right)$. Also find the $y-i n t$. (ans: $4 x-3 y=-15 ; y-$ int $=5$)
10. Given $g(x)=(x-3)^{2}$. Which of the following is/are true?
A. The range is $[3, \infty)$
B. The function is increasing through out its domain
C. The vertex is at $(3,0)$
D. There are no x-int.
(ans: only C)
11. (a) If $f(x)=\frac{x+2}{2 x+1}$ and $g(x)=\frac{x}{x-2}$, find $(f \circ g)(5)$.
(b) If $f(x)=\frac{1}{x^{2}}$ and $g(x)=\sqrt{1-x}$, find $(f \circ g)(x),\left(\frac{f}{g}\right)(x)$ and their domains. Find $(f \circ g)(0)$
(ans: $(f \circ g)(x)=\frac{3 x-4}{3 x-2}, f(g(x))(5)=\frac{11}{13}, f(g(x))=\frac{1}{1-x}$, domain: $(-\infty, 1)$.;
$\left(\frac{f}{g}\right)(x)=\frac{1}{x^{2} \sqrt{1-x}}$, Domain: $\left.(-\infty, 0) \cup(0,1) ;(f \circ g)(0)=1\right)$
12. The profit function P for a company selling x items is $P(x)=-3 x^{2}+96 x-368$. What value of x will maximize the profit? (ans: $x=16$).
13. The height s of an object aftger t seconds is given by $s=-16 t^{2}+128 t+$ 50. Find the maximum height of the object and the time it takes the object to reach this height.
(ans: $306 \mathrm{ft}, 4 \mathrm{sec}$.)
14. (a) Given $h(x)=4-\frac{x}{3}$, explain why does $h(x)$ have an inverse function and find $h^{-1}(-2)$.
(b) Given $g(x)=\sqrt{x}-1$, explain why does $g(x)$ have an inverse function and graph $g^{-1}(x)$.
(c) For the given functions below with its restricted domain, find $f^{-1}(x)$ and their domain and range .

$$
\text { (a) } f(x)=x^{2}-2 x, x \geq 1 \text { (b) } f(x)=\sqrt{x^{2}+2 x}, x \geq 0
$$

(ans:(a) Inverse function exists because h is an 1-to-1 function and $h^{-1}(-2)=18$
(b)Inverse function exists because g is an 1-to-1 function and $g^{-1}(x)=$ $(x+1)^{2}$
(C) $(\mathrm{a}) f^{-1}(x)=1+\sqrt{1+x}, \mathrm{D}:[-1, \infty) ; \mathrm{R}:[1, \infty)$.
(b) $\left.f^{-1}(x)=-1+\sqrt{1+x^{2}}, \mathrm{D}:[0, \infty) ; \mathrm{R}:[0, \infty)\right)$
15. Explain how $g(x)=(x-1)^{2}+2$ can be obtained by a transformation of the graph of $f(x)=x^{2}$.
(ans: shift right 1 unit, upward 2 units).
16. Given $f(x)=-3 x^{2}-6 x-5$. Find the vertex, x-int, y-int, domain and range.
(ans:Vertex : $(-1,-2) ; x$-int: none; $y-i n t:(0,-5) ; D:(-\infty, \infty) ; R$: $(-\infty,-2])$
17. A piecewise function f is given:

$$
f(x)= \begin{cases}x+1, & x \leq-2 \\ -1, & -2<x<1 \\ x^{2}+1, & x \geq 1\end{cases}
$$

and g is a one-to-one function such that $g(1)=-2$.
Find: (a) the x values on which $f(x) \leq 0$;
(b) let $a=f(-2), b=g^{-1}(-2)$ and $c=y-i n t$, find $a-b-c$.
(ans: $(\mathrm{a})(-\infty, 1),(\mathrm{b})-1)$.
18. Find the average rate of change of $f(x)=\frac{1}{1-x}$ on the interval $(-3,-1)$ and from -3 to x.
(ans: $\frac{1}{8}$, and)
19. Let
$f(x)= \begin{cases}\frac{\sqrt{1-x}}{x^{2}-9} & -4 \leq x<1 \\ \frac{1}{x-4}, & 3<x\end{cases}$
Find the domain of the function f.
(ans: $D:[-4,-3) \cup(-3,2) \cup(2,1) \cup(3, \infty))$
20. please practice the homework problem number 92 in section 1.4.
21. Find k so that the line connecting the points $(1,-2),(3, k)$ is perpendicular to the line $2 x+y+4=0$.
(ans: $k=-1$).
22. Let f be an odd 1-to-1 function such that $f(1)=3, f^{-1}(1)=2$. Find $f^{-1}(3)-f(2)=$?
(ans: 0).
23. Consider the parabola below,

(a) Determine and express the equation of the graph as $f(x)=a(x-$ $h)^{2}+k$.
(b) If $(2,4)$ is a point on the graph of its parent function $y=x^{2}$, what's the corresponding point on f ?
(c) What's the zero of the function f ?

You may use the following steps to help you determine the equation of the given graph:

Start with the parent function: \qquad .

Horizontal Shift ___ units (right/left) (select one)
Vertical (stretch/compression) (select one)
Vertical shift qquad units (up/down) (select one)
(Ans: $\left.\left.y=\frac{11}{4}(x-3)^{2}-1\right) ;(5,10) ; x=3 \pm \frac{2}{\sqrt{11}}\right)$
24. If $(1,4)$ is a point on the graph of $y=h(x)$, find the corresponding point on the graph of $-2 h\left(\frac{1}{2} x\right)$.
(ans: $\left(\frac{1}{2},-8\right)$).
25. Consider the graph of f shown in blue, find a possible formula for the transformation of f shown in the same coordinate system in red.

(ans: $2 f(x)+1$.

