Name (PRINT, last, first): \qquad Signature: \qquad

Constants				
$\epsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$	$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$	$m_{p}=m_{n}=1.67 \times 10^{-27} \mathrm{~kg}$	$e=1.6 \times 10^{-19} \mathrm{C}$	
$k=9 \times 10^{9} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{C}^{2}$	$\mu_{0}=12.56 \times 10^{-7} \mathrm{H} / \mathrm{m}$	$N_{A}=6.02 \times 10^{23}$ atoms $/ \mathrm{mole}$	$c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
$n_{\mathrm{H}_{2} \mathrm{O}}=1.333$	$\mathrm{k}=$ "kilo" $=10^{3}$	$\mathrm{M}=$ "mega" $=10^{6}$	$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$	
$\mathrm{~m}=$ "milli" $=10^{-3}$	$\mu=$ "micro" $=10^{-6}$	$\mathrm{n}=$ "nano" $=10^{-9}$	$\mathrm{p}=" \mathrm{pico} "=10^{-12}$	

1. A small 10 g plastic ball is suspended by a 20 cm long string in a uniform electric field. If the ball makes an angle 15° with the vertical, what is the net charge on the ball?
(1) $26.8 \mu \mathrm{C}$
(2) $5.26 \mu \mathrm{C}$
(3) $50 \mu \mathrm{C}$
(4) $13.4 \mu \mathrm{C}$
(5) $10.5 \mu \mathrm{C}$

2. Four charges of magnitude q are placed at the corners of a square with sides of length L. What is the magnitude of the force acting on any of the charges?
(1) $1.91 \mathrm{kq}^{2} / L^{2}$
(2) $k q^{2} / L^{2}$
(3) $2.50 \mathrm{kq} q^{2} / L^{2}$
(4) $1.41 \mathrm{kq}^{2} / L^{2}$
(5) $3.00 \mathrm{kq}^{2} / L^{2}$
3. Charges are arranged on a square of side d as shown in the diagram. In what direction does the electric field at the center of the square point? (The quadrants are numbered counterclockwise starting from the positive x-axis.)
(1) Fourth quadrant
(2) First quadrant
(3) Second quadrant
(4) Third quadrant

(5) $E=0$
4. Two charged particles are fixed to the x-axis: particle 1 of charge $q_{1}=20 \mu \mathrm{C}$ at $x=0 \mathrm{~m}$, and particle 2 of charge $q_{2}=-80 \mu \mathrm{C}$ at $x=0.6 \mathrm{~m}$. At what coordinate along the x axis is the net electric field produced by the particles equal to zero?
(1) -0.6 m
(2) +0.2 m
(3) +1.2 m
(4) +1.8 m
(5) -1.0 m
5. Four charges of magnitude $Q=3.0 \mu \mathrm{C}$ (but different signs, as in the figure) are arranged on the corners of a square of side 25 cm . Find the potential energy of the system of the four charges (in J).
(1) -0.84
(2) -0.34
(3) +1.75
(4) +1.30
(5) 0
6. A 1 gram particle with a charge of 2 mC starts from rest in a uniform electric field. If the particle travels 20 meters in 2 seconds, what is the magnitude of the uniform electric field (in N/C)?
(1) 5
(2) 10
(3) 15
(4) 2
(5) 20
7. The electric field at the surface of solid spherical conductor with a radius of 2 meters points radially away from the conductor and has a magnitude of $899 \mathrm{~N} / \mathrm{C}$. What is the net charge on the conductor (in $\mu \mathrm{C}$)?
(1) 0.4
(2) 0.9
(3) 1.6
(4) 0.2
(5) 2.0
8. If a 2.0 pF capacitor has a voltage of 20 mV , how many more electrons are on the negative plate than on the positive plate?
(1) 0.5×10^{6}
(2) 2.5×10^{5}
(3) 4.0×10^{14}
(4) 2.0×10^{3}
(5) none, the electrons are in equal numbers on the plates.
9. Two equipotential surfaces lying near the middle of the space between the plates of a parallel-plate capacitor are 2.0 mm apart and have a potential difference of 0.0012 volt. The area of each plate is $7.5 \mathrm{~cm}^{2}$. What is the magnitude of the charge on each plate, (in units of $10^{-15} \mathrm{C}$)?
(1) 4
(2) 16
(3) 5310
(4) 6.6
(5) 3320
10. A certain parallel plate capacitor with capacitance $12 \mu \mathrm{~F}$ is connected to a source of EMF with potential 3 V . A dielectric material with $\kappa=4$ is then inserted between the plates of the capacitor with the capacitor still connected to the circuit. By how much does the energy stored in the capacitor change?
(1) $1.6 \times 10^{-4} \mathrm{~J}$
(2) $5.4 \times 10^{-5} \mathrm{~J}$
(3) $1.2 \times 10^{-5} \mathrm{~J}$
(4) $1.4 \times 10^{-6} \mathrm{~J}$
(5) 0 J
11. An electric car has a battery voltage of 200 V . After 130 km of driving, the battery needs $2 \times 10^{8} \mathrm{~J}$ of electrical energy restored to fully recharge the battery. How many Coulombs have to be put into the positive terminal of the car battery (which remains at 200 V during the recharging process) by the battery charger? (units of Coulombs)
(1) 10^{6}
(2) 10^{3}
(3) 10^{4}
(4) 10^{5}
(5) 10^{7}
12. An electron is released from rest at the negative plate of a parallel-plate capacitor. If the distance across the plate is 5.0 mm and the potential difference across the plate is 5.0 V , with what velocity does the electron hit the positive plate? $\left(e=1.6 \times 10^{-19} \mathrm{C}, m_{e}=9.1 \times 10^{-31} \mathrm{~kg}\right)$
(1) $1.3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(2) $5.3 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(3) $1.0 \times 10^{5} \mathrm{~m} / \mathrm{s}$
(4) $2.6 \times 10^{5} \mathrm{~m} / \mathrm{s}$
(5) $0 \mathrm{~m} / \mathrm{s}$
13. A material shaped as a cylinder has a resistance R measured from one end of the cylinder to the other. If the material is now stretched to form a cylinder 4 times longer (with the same volume) what is the resistance of the new shape?
(1) $16 R$
(2) $4 R$
(3) $2 R$
(4) R
(5) $8 R$
14. A 9 V battery is connected to a 3Ω resistor. How much charge passes through the resistor in 3 hours?
(1) 32400 C
(2) 540 C
(3) 3600 C
(4) 60 C
(5) 13000 C
15. A copper cable with resistivity $\rho=1.7 \times 10^{-8} \Omega-\mathrm{m}$ is designed to carry a current of 200 Amps with a power loss of $2.0 \mathrm{~W} / \mathrm{m}$. What is the required radius of this cable (in cm)?
(1) 1.04
(2) 2.08
(3) 0.52
(4) 1.56
(5) 0.66
16. Two identical conducting spheres A and B carry charges $2 Q$ and $3 Q$, respectively. They are separated by a constant distance much larger than their diameters. A third identical conducting sphere C is uncharged. Sphere C is first touched to A, then to B and finally removed. As a result, the magnitude of the electrostatic force between A and B, initially F, becomes
(1) $F / 3$
(2) $3 F / 8$
(3) $F / 2$
(4) $F / 16$
(5) 0
17. Two protons approach one another head-on from a great distance. Initially each proton has kinetic energy 1.2 MeV (1 $\left.\mathrm{MeV}=1.6 \times 10^{-13} \mathrm{~J}\right)$. What is the closest distance in $\mathrm{fm}\left(1 \mathrm{fm}=10^{-15} \mathrm{~m}\right)$ the protons will approach one another?
(1) 0.6
(2) 2.4
(3) 1.2
(4) 0.3
(5) 4.8
18. A capacitor is charged by a battery in a circuit and then disconnected from the circuit, leaving it with charges $+Q$ and $-Q$ on the plates and a total energy U. A person then moves the capacitor plates to $1 / 5$ of their original separation. What is the work done by the person?
(1) $-4 U / 5$
(2) $+U / 5$
(3) $-U / 5$
(4) $-4 U$
(5) $+4 U$
19. A uniform electric field of $5,000 \mathrm{~V} / \mathrm{m}$ is directed along the negative y-axis. A proton is projected upward from the origin at an angle of 60 degrees above the horizontal. The proton's initial speed is $800,000 \mathrm{~m} / \mathrm{s}$. How much time (in $\mu \mathrm{s}$) is required for the proton to return to the x-axis? (Ignore gravitational forces.)
(1) 2.9
(2) 1.45
(3) 1.1
(4) 2.2
(5) 3.5
20. A $2.5-\mathrm{mC}$ charge is on the y-axis at $y=3.0 \mathrm{~m}$ and a $6.3-\mathrm{mC}$ charge is on the x-axis at $x=3.0 \mathrm{~m}$. What is the direction of the potential at the origin?
(1) potential has no direction
(2) 168°
(3) 292°
(4) 332°
(5) 22°
21. An air-filled 3.0 nF capacitor is charged to 8.0 V . If the plate separation is $100 \mu \mathrm{~m}$, what is the energy density in the electric field?
(1) $28 \mathrm{~mJ} / \mathrm{m}^{3}$
(2) $280 \mathrm{~J} / \mathrm{m}^{3}$
(3) $57 \mathrm{~mJ} / \mathrm{m}^{3}$
(4) $57 \mathrm{~J} / \mathrm{m}^{3}$
(5) more than $50 \mathrm{~J} / \mathrm{m}^{3}$
