MAC2313, Calculus III
 Exam 1 Review

This review is not designed to be comprehensive, but to be representative of the topics covered on the exam.

1. Let $\vec{a}=\hat{i}+\hat{j}-2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$, and $\vec{c}=\hat{j}-5 \hat{k}$. Find
(1) $|\vec{a}|$
(2) $\vec{a} \cdot \vec{b}$
(3) $\vec{a} \times \vec{b}$
(4) $\vec{a} \cdot(\vec{b} \times \vec{c})$
(5) the angle between \vec{a} and \vec{b}
(6) the scalar projection of \vec{b} onto \vec{a}
(7) the vector projection of \vec{b} onto \vec{a}
(8) the area of the parallelogram determined by \vec{a} and \vec{b}
(9) the volume of the parallelepiped determined by \vec{a}, \vec{b}, and \vec{c}
2. Thee forces act on a particle as given in the diagram below. Assume the system is in equilibrium.

If $\theta_{1}=\frac{\pi}{3}, \theta_{2}=\frac{\pi}{6},\left|\vec{F}_{1}\right|=5 \mathrm{~N}$, and $\left|\vec{F}_{2}\right|=10 \mathrm{~N}$, find (1) $\left|\vec{F}_{3}\right|$ and (2) θ_{3}.
3. Three forces $\vec{F}_{1}=\langle 2,1,1\rangle, \vec{F}_{2}=\langle-1,5,3\rangle$ and \vec{F}_{3} act on an object. Find \vec{F}_{3} if the net force on the particle has magnitude 6 and is in the direction of $\langle 1,-2,2\rangle$.
4. Assume that $\vec{u} \cdot \vec{v}=-3$ and $|\vec{v}|=2$. Find $\vec{v} \cdot(2 \vec{u}-3 \vec{v})$.
5. Let $\vec{u}=\langle 3,-1,2\rangle$ and $\vec{v}=\langle-2,1,-1\rangle$. Express the vector \vec{u} as the sum $\vec{u}=\vec{v}_{/ /}+\vec{v}_{\perp}$, where $\vec{v}_{/ /}$is parallel to \vec{v} and \vec{v}_{\perp} is perpendicular to \vec{v}.
6. If $A(1,-2,3), B(-1,4,5)$, and $C(0,-1,3)$ are three points in space, find
(1) the point closest to the $x z$-plane and the point closest to the plane $x=-2$
(2) an equation of the sphere with a diameter $A B$
(3) a unit vector perpendicular to the plane containing A, B, and C
(4) an equation of the plane containing A, B, and C
(5) the area of the triangle $A B C$
7. (1) Determine whether $A(1,0,1), B(2,-1,3)$, and $C(3,-2,5)$ lie on the same line.
(2) Determine whether $P(1,1,1), Q(2,0,3), R(4,1,7)$, and $S(3,-1,-2)$ lie on the same plane.
8. Do the lines $\vec{r}_{1}(t)=\langle 2+t, 1-2 t, t+3\rangle$ and $\overrightarrow{r_{2}}(s)=\langle 1-s, s, 2-s\rangle$ intersect? If so, find the point of intersection.
9. Let $L_{1}: \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $L_{2}: \frac{x+1}{6}=\frac{y-3}{-1}=\frac{z+5}{2}$ be two lines in space.
(1) Is $L_{1} / / L_{2}$? Do two lines intersect?
(2) Find the distance from the point $(1,1,1)$ to L_{1}.
10. Let $P_{1}: x+y-z=1$ and $P_{2}: x-y-z=5$.
(1) Do two planes intersect?
(2) Find the angle between P_{1} and P_{2}
(3) Find symmetric equations of the line of intersection of the two planes.
(4) Find the distance from the point $(1,1,-1)$ to P_{1}.
11. Discuss traces of the surface $x^{2}-y^{2}+4 z^{2}+2 y=1$ and identify the surface.
12. Find an equation of the surface consisting of all points $P(x, y, z)$ that are equidistant from P to the z-axis and from P to the plane $x=-1$. Identify the surface.
13. Consider the curve $\vec{r}(t)=\cos t \hat{i}+t \hat{j}-\sin t \hat{k}$. Find
(1) the unit tangent vector $\hat{T}(t)$ and the unit normal vector $\hat{N}(t)$
(2) the tangent line to the curve at $(1,0,0)$
(3) the arc length from $(1,0,0)$ to $(1,2 \pi, 0)$
(4) $\frac{d s}{d t}$
(5) the curvature of the curve at the point $(1,0,0)$
14. Find the curvature of the function $y=x^{4}$ at the point $(1,1)$.
15. Let $\vec{r}(t)=\left\langle t^{2}, 2 t, \ln (t)\right\rangle$ be a vector function describes the path of a particle with respect to t. Find the tangential and normal components of acceleration at $t=1 / 2$.
16. For the curve given by $\vec{r}(t)=\left\langle\sin ^{3} t, \cos ^{3} t, \sin ^{2} t\right\rangle, 0<t<\pi / 2$, find
(1) the unit tangent vector
(2) the unit normal vector
(3) the unit binormal vector
(4) the curvature
17. Let $\vec{r}(t)=\langle t \ln (t), \sin (\pi t), \sqrt{5-t}\rangle$ be a vector function.
(1) Find the domain of $\vec{r}(t)$.
(2) Find $\lim _{t \rightarrow 0^{+}} \vec{r}(t)$.
(3) Find $\int \vec{r}(t) d t$.
(4) Let the curve C be parametrized by $\vec{r}(t)$. Find a and b if the vector $\langle a, b, 1\rangle$ is parallel to the tangent vector of the curve C at the point $(0,0,2)$.

