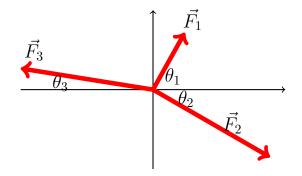
MAC2313, Calculus III Exam 1 Review

This review is **not** designed to be comprehensive, but to be representative of the topics covered on the exam.

- 1. Let $\vec{a} = \hat{i} + \hat{j} 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + \hat{k}$, and $\vec{c} = \hat{j} 5\hat{k}$. Find (1) $|\vec{a}|$ (2) $\vec{a} \cdot \vec{b}$
 - (1) $|\vec{a}|$ (2) $\vec{a} \cdot \vec{b}$ (3) $\vec{a} \times \vec{b}$ (4) $\vec{a} \cdot (\vec{b} \times \vec{c})$
- (5) the angle between \vec{a} and \vec{b}
- (6) the scalar projection of \vec{b} onto \vec{a}
- (7) the vector projection of \vec{b} onto \vec{a}
- (8) the area of the parallelogram determined by \vec{a} and \vec{b}
- (9) the volume of the parallelepiped determined by \vec{a} , \vec{b} , and \vec{c}

2. Thee forces act on a particle as given in the diagram below. Assume the system is in equilibrium.



If $\theta_1 = \frac{\pi}{3}$, $\theta_2 = \frac{\pi}{6}$, $|\vec{F_1}| = 5$ N, and $|\vec{F_2}| = 10$ N, find (1) $|\vec{F_3}|$ and (2) θ_3 .

3. Three forces $\vec{F_1} = \langle 2, 1, 1 \rangle$, $\vec{F_2} = \langle -1, 5, 3 \rangle$ and $\vec{F_3}$ act on an object. Find $\vec{F_3}$ if the net force on the particle has magnitude 6 and is in the direction of $\langle 1, -2, 2 \rangle$.

4. Assume that $\vec{u} \cdot \vec{v} = -3$ and $|\vec{v}| = 2$. Find $\vec{v} \cdot (2\vec{u} - 3\vec{v})$.

5. Let $\vec{u} = \langle 3, -1, 2 \rangle$ and $\vec{v} = \langle -2, 1, -1 \rangle$. Express the vector \vec{u} as the sum $\vec{u} = \vec{v}_{//} + \vec{v}_{\perp}$, where $\vec{v}_{//}$ is parallel to \vec{v} and \vec{v}_{\perp} is perpendicular to \vec{v} .

6. If A(1, -2, 3), B(-1, 4, 5), and C(0, -1, 3) are three points in space, find

(1) the point closest to the xz-plane and the point closest to the plane x = -2

- (2) an equation of the sphere with a diameter AB
- (3) a unit vector perpendicular to the plane containing A, B, and C
- (4) an equation of the plane containing A, B, and C
- (5) the area of the triangle ABC

7. (1) Determine whether A(1,0,1), B(2,-1,3), and C(3,-2,5) lie on the same line.

(2) Determine whether P(1, 1, 1), Q(2, 0, 3), R(4, 1, 7), and S(3, -1, -2) lie on the same plane.

8. Do the lines $\vec{r}_1(t) = \langle 2+t, 1-2t, t+3 \rangle$ and $\vec{r}_2(s) = \langle 1-s, s, 2-s \rangle$ intersect? If so, find the point of intersection.

9. Let $L_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $L_2: \frac{x+1}{6} = \frac{y-3}{-1} = \frac{z+5}{2}$ be two lines in space.

- (1) Is $L_1//L_2$? Do two lines intersect?
- (2) Find the distance from the point (1, 1, 1) to L_1 .
- 10. Let P_1 : x + y z = 1 and P_2 : x y z = 5.
- (1) Do two planes intersect?
- (2) Find the angle between P_1 and P_2
- (3) Find symmetric equations of the line of intersection of the two planes.
- (4) Find the distance from the point (1, 1, -1) to P_1 .

11. Discuss traces of the surface $x^2 - y^2 + 4z^2 + 2y = 1$ and identify the surface.

12. Find an equation of the surface consisting of all points P(x, y, z) that are equidistant from P to the z-axis and from P to the plane x = -1. Identify the surface.

13. Consider the curve $\vec{r}(t) = \cos t \hat{i} + t \hat{j} - \sin t \hat{k}$. Find

- (1) the unit tangent vector $\hat{T}(t)$ and the unit normal vector $\hat{N}(t)$
- (2) the tangent line to the curve at (1,0,0)
- (3) the arc length from (1,0,0) to $(1,2\pi,0)$
- (4) $\frac{ds}{dt}$
- (5) the curvature of the curve at the point (1, 0, 0)

14. Find the curvature of the function $y = x^4$ at the point (1, 1).

15. Let $\vec{r}(t) = \langle t^2, 2t, \ln(t) \rangle$ be a vector function describes the path of a particle with respect to t. Find the tangential and normal components of acceleration at t = 1/2.

16. For the curve given by $\vec{r}(t) = \langle \sin^3 t, \cos^3 t, \sin^2 t \rangle$, $0 < t < \pi/2$, find

- (1) the unit tangent vector
- (2) the unit normal vector
- (3) the unit binormal vector
- (4) the curvature
- 17. Let $\vec{r}(t) = \langle t \ln(t), \sin(\pi t), \sqrt{5-t} \rangle$ be a vector function.
- (1) Find the domain of $\vec{r}(t)$.
- (2) Find $\lim_{t\to 0^+} \vec{r}(t)$. (3) Find $\int \vec{r}(t) dt$.

(4) Let the curve C be parametrized by $\vec{r}(t)$. Find a and b if the vector $\langle a, b, 1 \rangle$ is parallel to the tangent vector of the curve C at the point (0, 0, 2).