REVIEW

1. Find the integral.

$$
\int \frac{d x}{\left(x^{2}+4\right)^{2}}
$$

(hint: trig substitution)
A. $\frac{1}{8} \arctan \left(\frac{x}{4}\right)+\frac{x}{\left(x^{2}+4\right)}+c$
B. $\frac{1}{16} \arctan \left(\frac{x}{2}\right)+\frac{x}{8\left(x^{2}+4\right)}+c$
C. $\frac{1}{8} \arctan \left(\frac{x}{2}\right)+\frac{x}{4\left(x^{2}+4\right)}+c$
D. $\frac{1}{16} \arctan \left(\frac{x}{4}\right)-\frac{x}{8\left(x^{2}+4\right)}+c$
2. Evaluate the integral.

$$
\int \frac{\sec x}{\tan ^{3} x} d x
$$

(trig integration)
A. $\frac{1}{2}(-\csc x \cot x+\ln |\csc x-\cot x|)+c$
B. $\frac{1}{2}(-\csc x \cot x-\ln |\csc x-\cot x|)+c$
C. $\frac{1}{2}(\ln |\csc x-\cot x|)+c$
D. $\frac{1}{2}(\csc x \cot x+\ln |\csc x-\cot x|)+c$
E. $\frac{1}{2}(\csc x \cot x-\ln |\csc x-\cot x|)+c$
3. Evaluate the integral.

$$
\int \frac{3 x}{\left(x^{2}+4 x+6\right)} d x
$$

(partial fraction Case III)
A. $\frac{3}{2} \ln \left(x^{2}+4 x+6\right)-\frac{6}{\sqrt{2}} \arctan \left|\frac{x+2}{\sqrt{2}}\right|+c$
B. $\frac{1}{2} \ln \left(x^{2}+4 x+6\right)+\frac{6}{\sqrt{2}} \arctan \left|\frac{x+2}{\sqrt{2}}\right|+c$
C. $\frac{3}{2} \ln \left(x^{2}+4 x+6\right)+\frac{6}{\sqrt{2}} \arctan \left|\frac{x+2}{\sqrt{2}}\right|+c$
D. $\frac{1}{2} \ln \left(x^{2}+4 x+6\right)-\frac{6}{\sqrt{2}} \arctan \left|\frac{x+2}{\sqrt{2}}\right|+c$
4. Evaluate the integral.

$$
\int \frac{x^{2}-x-1}{(x-1)(x+2)^{2}} d x
$$

(partial fraction Case II)
5. Indicate a good method for evaluating the integral.

$$
\int \frac{8 x}{\sqrt{12-6 x-x^{2}}} d x
$$

A. substitution $\left(u=12-6 x-x^{2}, d u=(-6-2 x) d x\right)$
B. integration by parts $\left(u=12-6 x-x^{2}, v^{\prime}=8 x\right)$
C. a trigonometric method
D. trigonometric substitution $(x+3=\sqrt{21} \sin \theta)$
6. Evaluate the integrals:
(a) $\int \frac{1}{x \sqrt{x+9}} d x$. (rationalizing sub and \quad __).
(b) $\int \frac{e^{\sqrt[4]{x}}}{\sqrt[4]{x}} d x$. (rationalizing sub and \qquad).
7. Sequence:
(a) $\left\{\frac{1}{2^{n}}\right\}$ is bounded and convergent. (T/F)
(b) $\left\{\sin \left(\frac{n \pi}{2}\right)\right\}$ is bounded and convergent. (T/F)
(c) $\left\{\cos \left(\frac{(2 n+1) \pi}{2}\right)\right\}$ is bounded and divergent. (T/F)
(d) $\left\{\tan \left(\frac{\pi}{n}\right)\right\}_{n=3}$ is bounded and convergent. (T/F)
8. Determine if the series converges (by what test?)
(a) $\sum_{n=5}^{\infty} \frac{e^{1 /\left(n^{2}\right)}}{n^{3}}$
(b) $\sum_{n=5}^{\infty} \frac{(-1)^{n}+4}{n^{3}}$
(c) $\sum_{n=5}^{\infty} \tan \left(\frac{1}{n}\right)$
(d) $\sum_{n=5}^{\infty} \frac{(-1)^{n} n}{n+1}, \quad \sum_{n=5}^{\infty} \cos (n \pi)$
(e) $\sum_{n=5}^{\infty} \frac{(-1)^{n}}{\ln n}$,
(f) $\sum_{n=1}^{\infty}(-2)^{n}, \quad \sum_{n=1}^{\infty}\left(\frac{-1}{2}\right)^{n}$,
(g) $\sum_{n=5}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots(2 n+1)}{n!}$,
9. (a) Let s_{n} be the n-partial sum of the series $\sum a_{n}$.

Suppose that $s_{n}=\frac{1}{\ln n}$ for all $n \geq 5$. Determine the sum of $\sum a_{n}$, if possible.
(b) Let s_{n} be the n-partial sum of the series $\sum a_{n}$.

Suppose that $s_{n}=\cos \left(\frac{1}{n}\right)$ for all $n \geq 5$. Determine the sum of $\sum a_{n}$, if possible.
(c) If $\left|a_{n}\right| \leq \frac{1}{n}$ for all n, then $\sum a_{n}$ converges conditionally. (T/F)
(d) If $\left|a_{n}\right| \geq \frac{1}{n}$ for all n, then $\sum a_{n}$ converges conditionally. (T/F)
10. Consider the series $\sum_{1}^{\infty} \frac{(-1)^{n} n}{(3 n)!}$. According to the alternating series error estimation theorem, what is the least number of terms needed to approximate the sum of the series with an error no more than $\frac{1}{100000}$?
(alternating series error estimation)
11. Evaluate the sum of the series $\sum_{3}^{\infty}\left[\cos \left(\frac{\pi}{n+1}\right)-\cos \left(\frac{\pi}{n}\right)\right]$. (telescoping series)
12. Find the interval of convergence. $\sum_{3}^{\infty} \frac{n(x-4)^{n}}{2^{n}}$
13. (a) Find the series representation of $\frac{1}{(x-2)^{2}}$.
(b) Find the series representation of $\frac{1}{(1+x)(1-2 x)}$ and the radius of convergence.
14. Find the function with the following Maclaurin series.

$$
1-\frac{6^{3} x^{3}}{3!}+\frac{6^{5} x^{5}}{5!}-\frac{6^{7} x^{7}}{7!}+\cdots
$$

A. $-\sin (6 x)$
B. $-6 x+\sin (6 x)+1$
C. $-6 x+\sin (6 x)$
D. $\sin (6 x)+1$
E. $+6 x+\sin (6 x)-1$
15. Suppose that $F(x)$ is a power series center at 0 with radius of convergence $R=4$. Which of the following is false?
A. $F^{\prime}(x)$ is a power series with radius of convergence $R=4$.
B. $F(4 x)$ is a power series with radius of convergence $R=16$.
C. $\int F(4 x) d x$ is a power series with radius of convergence $R=1$.
D. $x^{3} F(x)$ is a power series with radius of convergence $R=4$.
16. What is the derivative $f^{(4)}(-2)$ for a function with Taylor series

$$
T(x)=3(x+2)+(x+2)^{2}-4(x+2)^{3}+2(x+2)^{4}-(x+2)^{7}+\cdots ?
$$

A. 16
B. 8
C. 2
D. $1 / 12$
E. 48
17. Find the sum of the series $\sum_{n=2}^{\infty}\left[\frac{(-1)^{n+1}}{7^{n}}+\frac{(-1)^{n+1}}{n}\right]$.
A. $\ln 2-\frac{7}{6}$
B. $\ln 2-\frac{57}{56}$
C. $\ln 2+\frac{5}{6}$
D. $\ln 2-\frac{1}{56}$
E. $\ln 2+\frac{1}{56}$
18. Which of the following descriptions is incorrect?
A. $\theta=\frac{\pi}{4}$ is equivalent to the line $y=x, x \geq 0$
B. $r=\frac{\pi}{4}$ is equivalent to the circle centered at the poll with radius $\frac{\pi}{4}$
C. $r \cos \theta=2$ is equivalent to the vertical line $x=2$
D. $r^{2}=2$ describes a circle of radius 2 , center at the origin
E. $r=4 \sin \theta$ describes a circle of radius 2 , center at $(0,2)$
19. Find the area of the region lies inside both curves.
(a) $r_{1}^{2}=4 \cos (2 \theta), r_{2}=4$
(b) $r_{1}=1+\sin \theta, r_{2}=\sqrt{2} \cos \theta, \quad\left(\right.$ Let $0<\theta_{1}<\pi / 2$ be the angle where the two curves intersect).
20. Find the equation of the tangent line at the given value of parameter.

$$
x=\sin \theta, y=\cos \theta, \theta=\frac{\pi}{3}
$$

A. $y=\sqrt{3} x+\sqrt{2}$
B. $y=-\sqrt{3} x+3 \sqrt{2}$
C. $y=x-\sqrt{2}$
D. $y=-\sqrt{3} x+2$
E. $y=-\frac{3 \sqrt{2}}{2} x+3$
21. Find all points on the curve $x=\sec t, y=\tan t$ at which horizontal and vertical tangents exist.

Answer: No horizontal tangents. Vertical tangents at $(1,0),(-1,0)$
22. Using Shell method, find the volume generated by rotating about the x-axis the following region bounded by

$$
y=\ln x, \quad y=2, \quad y=1
$$

A. $3 e^{4} \pi$
B. $6 e^{4} \pi$
C. $2 e^{2} \pi$
D. $6 e^{2} \pi$
E. $2 e^{4} \pi$
23. The base of a solid is bounded by the curve $y=\sin x$, and the x-axis on the interval $[0, \pi]$. The cross sections of the solid perpendicular to the x-axis are isosceles right angle triangles with the corner of the right angles lining up along the x - axis. (see diagram) Find the volume of the solid.

A. $\frac{301}{512}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{10}$
D. $\frac{3}{5}$
E. $\frac{\pi}{8}$
24. Using the washer method, set up an integral to find the the volume of the solid generated by revolving the shaded region bounded by $y^{2}-x+1=0$ and $y^{2}+x-3=0$ about the line $x=-2$.

A. $\pi \int_{-1}^{1}\left(5-y^{2}\right)^{2}-\left(3+y^{2}\right)^{2} d y$
B. $\pi \int_{-1}^{1}\left(y^{2}+5\right)^{2}-\left(3+y^{2}\right)^{2} d y$
C. $\pi \int_{-1}^{1}\left(5-y^{2}\right)^{2}-\left(3-y^{2}\right)^{2} d y$
D. $\pi \int_{-1}^{1}\left(5-y^{2}\right)^{2}+\left(y^{2}-3\right)^{2} d y$
E. $\pi \int_{-1}^{1}\left(y^{2}+5\right)^{2}-\left(3-y^{2}\right)^{2} d y$

