Part I: Multiple Choice

1. Which of the following series can we conclude diverges using the Test for Divergence?
(a) $\sum_{n=2}^{\infty} \frac{\ln n}{n}$
(b) $\sum_{n=0}^{\infty} \ln \left(\frac{3 n^{2}+1}{4 n^{2}+n+1}\right)$
(c) $\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)$
(d) $\sum_{n=1}^{\infty} \frac{1}{2-\cos \left(\frac{1}{n}\right)}$
(e) (b) and (d)

Ans: (a) and (c) both have $\lim _{n \rightarrow \infty} a_{n}=0$; (b): $\lim _{n \rightarrow \infty} a_{n}=\ln \frac{3}{4} \neq 0$ (d) $\lim _{n \rightarrow \infty} a_{n}=1 \neq 0$
2. Which of the following series converge absolutely?
i) $\sum_{n=2}^{\infty} \frac{(-1)^{n} e^{n}}{\sqrt{n!}}$
ii) $\sum_{n=2}^{\infty} \frac{2-\sin (n!)}{\sqrt[3]{n}}$
(a) Neither i or $i i$
(b) Both i and $i i$
(c) Only $i i$
(d) Only i

Ans.:(i) Ratio test, $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=0<1$; (ii) Divergent by DCT with $b_{n}=\frac{1}{\sqrt[3]{n}}$
3. Given that the following sequence is monotonically increasing and bounded above, find the limit of the sequence.

$$
a_{n}=\sqrt{1+a_{n-1}}, a_{1}=\frac{1}{2}
$$

(a) 1
(b) $\sqrt{2}$
(c) 5
(d) $\frac{1+\sqrt{5}}{2}$
(e) Diverges by TFD

Ans.: $L=\sqrt{1+L} \Longrightarrow L^{2}-L-1=0$
4. Which of the following series' sums may be found using techniques from this class?
P. $\sum_{n=5}^{\infty} \frac{1}{n^{3}-n}$
Q. $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
R. $\sum_{n=2}^{\infty} \frac{\sqrt{3}}{e^{n} \pi}$
(a) P, Q, and R
(b) P and R
(c) P and Q
(d) P only
(e) Q only

Ans.: P. Telescoping; R: Geo;
5. Determine the values of k for which the series $\sum_{n=1}^{\infty} \frac{n^{1 / 4}}{\sqrt{n^{k}+9 n}}$ will converge.
(a) $k \in\left(\frac{5}{2}, \infty\right)$
(b) $k \in\left[\frac{5}{2}, \infty\right)$
(c) $k \in(3, \infty)$
(d) $k \in[3, \infty)$
(e) $k \in\left(\frac{8}{3}, \infty\right)$

Ans.: $\frac{k}{2}-\frac{1}{4}>1 \Longrightarrow k>\frac{5}{2}$
6. Which of the statements below is true for the following two series?
$A=\sum_{k=1}^{\infty}\left(\frac{k}{k+1}\right)^{k^{2}}$
$B=\sum_{k=1}^{\infty} \frac{(k!)^{2}}{(2 k)!}$
(a) A converges and B diverges.
(b) A diverges and B converges.
(c) Both diverge.
(d) Both converge.
(e) The convergence of these series cannot be determined.

Ans.: A: Root Test, $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\frac{1}{e}<1$, Converges; B: Ratio test, $\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=\frac{1}{4}<1$, Converges.
7. How many of the following statements are true for a series $\sum a_{n}$ with positive terms?

- If $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$, then the series converges conditionally.
- If $\lim _{n \rightarrow \infty} a_{n}=0$, then the series converges.
- If $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}=0$, then the series converges absolutely.
- If $\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}=1$, then the series diverges.
(a) 0
(b) 1
(c) 2
(d) 3
(e) 4

Ans.:
8. Which of the series below are convergent using the limit comparison test?
A. $\sum_{n=10}^{\infty} \tan \left(\frac{1}{n}\right)$
B. $\sum_{n=10}^{\infty} \sin ^{3}\left(\frac{1}{n}\right)$
(a) Both A and B
(b) A only
(c) B only
(d) Neither A nor B
(e) The limit comparison test is inconclusive for these series.

Ans.: A: LCT, $b_{n}=\frac{1}{n}$, Diverges; B: LCT, $b_{n}=\frac{1}{n^{3}}$, Converges.
9. For which of the following sequences b_{n} would the series $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converge conditionally (and not absolutely)?
(a) $b_{n}=\frac{1}{n \ln n}$
(b) $b_{n}=\frac{2^{n}}{e^{n}}$ (Geo. series)
(c) $b_{n}=\frac{(n+1)!}{n^{n}} \quad$ (Ratio test)
(d) (a), (b), and (c)
(e) None of the above

Ans.:
10. Suppose that $0 \leq h(x) \leq f(x) \leq g(x)$ for all $x \geq 1$ and all of the functions are continuous and decreasing. Which of the following would guarantee that $\sum_{n=1}^{\infty} f(n) \underline{\text { converges? }}$
(a) $\int_{1}^{\infty} h(x) d x$ converges
(b) $\int_{1}^{\infty} f(x) d x$ converges
(c) $\int_{1}^{\infty} g(x) d x$ converges
(d) (a), (b), and (c)
(e) (b) and (c)

Name:

Part II: Free Response

FR Scores		
1		
2		
3	6	
4	4	
	$/ 4$	
FR Total		

1. Give examples of the following (you do not need to justify your answers):
(a) A sequence that is neither monotonic nor bounded.

$$
\left\{(-1)^{n} e^{n}\right\}
$$

(b) A sequence that is monotonic but unbounded $\left\{e^{n}\right\}$
(c) A sequence that is not monotonic but is bounded

$$
\left\{(-1)^{n} \frac{1}{e^{n}}\right\}
$$

(d) A sequence that is monotonic and bounded.
$\left\{\frac{1}{e^{n}}\right\}$
2. Find the sum of the following series, or if it diverges, state that it diverges. You may leave your answer as a sum of fractions.

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}+5 n+6}+\frac{5}{4^{n}}
$$

Show ALL work to receive full credits

(1) $\sum_{n=2}^{\infty} \frac{1}{n^{2}+5 n+6}=\sum_{n=2}^{\infty} \frac{1}{n+2}-\frac{1}{n+3}$

$$
S_{N}=\frac{1}{4}-\frac{1}{N+3}
$$

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}+5 n+6}=\lim _{n \rightarrow \infty} S_{N}=\frac{1}{4}
$$

(2) $\sum_{n=2}^{\infty} \frac{5}{4^{n}}=\frac{\frac{5}{4^{2}}}{1-\frac{1}{4}}=\frac{5}{12}$ (Geometric series)

$$
\sum_{n=2}^{\infty} \frac{1}{n^{2}+5 n+6}+\frac{5}{4^{n}}=\frac{1}{4}+\frac{5}{12}=\frac{2}{3}
$$

3. Show ALL work to receive full credits.

(a) Determine if the series $\sum_{n=10}^{\infty} \frac{10-\sin n}{n^{4}}$ is convergent or divergent. Clearly indicate what test you are using to justify your conclusion and state why it applies.

$$
\begin{aligned}
& \text { Since } 0<a_{n}=\frac{10-\sin n}{n^{4}} \leq \frac{11}{n^{4}}=b_{n} \\
& \text { and } \quad \sum_{n=10}^{\infty} b_{n} \text { Converges (by the } p-\text { test, } p=4>1 \text {) } \\
& \Longrightarrow \sum_{n=10}^{\infty} a_{n} \text { Converges (by the DCT) }
\end{aligned}
$$

Circle one: (Convergent, Divergent), by DCT Test.
(b) Suppose that you choose to estimate $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2+3^{n}}$ by adding the first 4 terms together. According to the Alternating Series Error Estimation Theorem, how large can the error of doing this estimate possibly be?

$$
\begin{aligned}
& b_{n}=\frac{1}{2+3^{n}} \\
& \left|s-S_{4}\right| \leq b_{5}=\frac{1}{2+3^{5}}=\left(\frac{1}{245}\right)
\end{aligned}
$$

4. Determine whether the following series converges or diverges. Clearly indicate what test you are using to justify your conclusion and state why it applies.

$$
1+\frac{1 \cdot 2}{1 \cdot 3}+\frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5}+\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7}+\ldots+\frac{n!}{1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)}+\ldots
$$

Show ALL work to receive full credits.

$$
\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)!1 \cdot 3 \cdot 5 \cdots(2 n-1)}{n!1 \cdot 3 \cdot 5 \cdots(2 n-1)(2 n+1)}=\frac{1}{2}<1
$$

\Longrightarrow the series converges by the Ratio test.

Version B:

\#2 $: \lim _{n \rightarrow \infty} S_{N}=1 ;$ Sum $=1+\frac{7}{20}=\frac{27}{20}$
$\# \mathbf{3}(\mathbf{a}): b_{n}=\frac{a}{n^{2}}$ where the constant a can be any number $\geq 9 . \sum b_{n}$ converges by p-test, $p=2>1$, $\sum a_{n}$ converges by DCT.
$\# \mathbf{3}(\mathbf{b}): \mid$ error $\left\lvert\, \leq \frac{1}{5^{3}+3=} \frac{1}{128}\right.$.

Version C:

$\# 2: \lim _{n \rightarrow \infty} S_{N}=\frac{1}{5} ;$ Sum $=\frac{1}{5}+\frac{9}{2}=\frac{47}{10}$
$\# \mathbf{3}(\mathbf{a}): b_{n}=\frac{a}{n^{3}}$ where the constant a can be any number $\geq 4 . \sum b_{n}$ converges by $p-$ test, $p=3>1$, $\sum a_{n}$ converges by DCT.
$\# \mathbf{3}(\mathbf{b}): \mid$ error $\left\lvert\, \leq \frac{1}{42}\right.$.

Version D:

\#2 $: \lim _{n \rightarrow \infty} S_{N}=\frac{1}{4} ;$ Sum $=\frac{1}{4}+\frac{3}{10}=\frac{11}{26}$
$\# \mathbf{3}(\mathbf{a}): b_{n}=\frac{a}{n^{3}}$ where the constant a can be any number $\geq 6 . \sum b_{n}$ converges by $p-$ test, $p=3>1$, $\sum a_{n}$ converges by DCT.
$\# \mathbf{3}(\mathbf{b}): \mid$ error $\left\lvert\, \leq \frac{1}{74}\right.$.

Multiple Choices:

	Ver A	Ver B	Ver C	Ver D
Q1	E	A	D	A
Q2	D	C	E	E
Q3	D	D	C	B
Q4	B	E	E	A
Q5	A	D	E	B
Q6	D	C	D	E
Q7	B	C	B	C
Q8	C	B	C	D
Q9	A	C	A	C
Q10	E	B	B	C

Ver. A Ver. B Ver. C Ver. D

1. d
e
d
d
2. (a) DCT
3. (c) diverges
4. (a) DCT $\left(\left|a_{n}\right|\right.$ with $\frac{1}{\sqrt{n} \sqrt{n}}$ to show the series is NOT absolute convergent); AST (to show the series is conditionally convergent)
5. (c) converges conditionally
6. b
a
a
b
7. Determine if the series $\sum_{n=5}^{\infty} \frac{3-(-1)^{n}}{n}$ converges or diverges.
(a) Which test did you use? DCT
(b) Show your work in determining whether the series converges or diverges.

$$
b_{n}=\frac{2}{n}<\frac{3-(-1)^{n}}{n}=a_{n}
$$

and $\sum b_{n}=\sum \frac{1}{n}$ diverges by $p-$ series test $(p=1)$
$\Rightarrow \quad \sum a_{n}=\sum \frac{3-(-1)^{n}}{n}$ also diverges
(c) The series (converges, diverges). (circle one of the choices)
3. Determine if the series $\sum_{n=5}^{\infty} \frac{(-1)^{n}}{\sqrt{n} \ln n}$ converges absolutely, ,conditionally or diverges.
(a) Which test(s) did you use? DCT (to show it does not converge absolutely),

> AST (to show it converges conditionally.)
(b) Show your work.

1. $\sqrt{n} \ln n<\sqrt{n} \cdot \sqrt{n}$ for all $n \geq 5, \quad \Rightarrow \quad\left|a_{n}\right|=\frac{1}{\sqrt{n} \ln n}>\frac{1}{\sqrt{n} \cdot \sqrt{n}}=\frac{1}{n}$

Since $\quad \sum \frac{1}{n}$ diverges $(p=1) \Rightarrow \sum\left|a_{n}\right|$ diverges (by DCT)
2. Since $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n} \ln n}=0$ and $\frac{1}{\sqrt{n} \ln n}=0$ is decreasing

$$
\Rightarrow \quad \sum \frac{(-1)^{n}}{\sqrt{n} \ln n} \text { converges (by AST) }
$$

(1) and (2) $\Rightarrow \sum a_{n}$ converges conditionally.
(c) The series (converges absolutely, converges conditionally, diverges). (circle one)

