Part I: Multiple Choice

1. Which of the following series can we conclude diverges using the Test for Divergence?

(a)
$$\sum_{n=2}^{\infty} \frac{\ln n}{n}$$

(b)
$$\sum_{n=0}^{\infty} \ln \left(\frac{3n^2 + 1}{4n^2 + n + 1} \right)$$

(c)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{2 - \cos\left(\frac{1}{n}\right)}$$

(e) (b) and (d)

Ans: (a) and (c) both have $\lim_{n \to \infty} a_n = 0$; (b): $\lim_{n \to \infty} a_n = \ln \frac{3}{4} \neq 0$ (d) $\lim_{n \to \infty} a_n = 1 \neq 0$

2. Which of the following series converge absolutely?

i)
$$\sum_{n=2}^{\infty} \frac{(-1)^n e^n}{\sqrt{n!}}$$
 ii) $\sum_{n=2}^{\infty} \frac{2 - \sin(n!)}{\sqrt[3]{n}}$

(a) Neither i or ii (b) Both i and ii (c) Only ii (d) Only i

Ans.:(i) Ratio test, $\lim_{n \to \infty} \left| \frac{a_n}{b_n} \right| = 0 < 1$; (ii) Divergent by DCT with $b_n = \frac{1}{\sqrt[3]{n}}$

Given that the following sequence is monotonically increasing and bounded above, find the limit of the sequence.

(a) 1 (b)
$$\sqrt{2}$$
 (c) 5 (d) $\frac{1+\sqrt{5}}{2}$ (e) Diverges by TFD

Ans.: $L = \sqrt{1+L} \Longrightarrow L^2 - L - 1 = 0$

4. Which of the following series' sums may be found using techniques from this class?

P.
$$\sum_{n=5}^{\infty} \frac{1}{n^3 - n}$$
 Q. $\sum_{n=1}^{\infty} \frac{1}{n^3}$ R. $\sum_{n=2}^{\infty} \frac{\sqrt{3}}{e^n \pi}$

(a) P, Q, and R (b) P and R (c) P and Q (d) P only (e) Q only

Ans.: P. Telescoping; R: Geo;

- 5. Determine the values of k for which the series $\sum_{n=1}^{\infty} \frac{n^{1/4}}{\sqrt{n^k + 9n}}$ will <u>converge</u>.
 - (a) $k \in \left(\frac{5}{2}, \infty\right)$ (b) $k \in \left[\frac{5}{2}, \infty\right)$ (c) $k \in (3, \infty)$ (d) $k \in [3, \infty)$ (e) $k \in \left(\frac{8}{3}, \infty\right)$ Ans.: $\frac{k}{2} - \frac{1}{4} > 1 \Longrightarrow k > \frac{5}{2}$
- 6. Which of the statements below is true for the following two series?

$$A = \sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^{k^2} \qquad B = \sum_{k=1}^{\infty} \frac{(k!)^2}{(2k)!}$$

- (a) A converges and B diverges.
- (b) A diverges and B converges.
- (c) Both diverge.
- (d) Both converge.
- (e) The convergence of these series cannot be determined.

Ans.: A: Root Test, $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \frac{1}{e} < 1$, Converges; B: Ratio test, $\lim_{n \to \infty} \left| \frac{a_n}{b_n} \right| = \frac{1}{4} < 1$, Converges.

- 7. How many of the following statements are true for a series $\sum a_n$ with positive terms?
 - If $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$, then the series converges conditionally.
 - If $\lim_{n \to \infty} a_n = 0$, then the series converges.
 - If $\lim_{n \to \infty} (a_n)^{\frac{1}{n}} = 0$, then the series converges absolutely.
 - If $\lim_{n \to \infty} (a_n)^{\frac{1}{n}} = 1$, then the series diverges.

(a) 0 (b) 1 (c) 2 (d) 3 (e) 4

Ans.:

8. Which of the series below are convergent using the limit comparison test?

A.
$$\sum_{n=10}^{\infty} \tan\left(\frac{1}{n}\right)$$
 B. $\sum_{n=10}^{\infty} \sin^3\left(\frac{1}{n}\right)$

- (a) Both A and B
- (b) A only
- (c) B only
- (d) Neither A nor B
- (e) The limit comparison test is inconclusive for these series.

Ans.: A: LCT, $b_n = \frac{1}{n}$, Diverges; B: LCT, $b_n = \frac{1}{n^3}$, Converges.

- 9. For which of the following sequences b_n would the series $\sum_{n=1}^{\infty} (-1)^n b_n$ converge <u>conditionally</u> (and not absolutely)?
 - (a) $b_n = \frac{1}{n \ln n}$ (b) $b_n = \frac{2^n}{e^n}$ (Geo. series) (c) $b_n = \frac{(n+1)!}{n^n}$ (Ratio test) (d) (a), (b), and (c) (e) None of the above

Ans.:

10. Suppose that $0 \le h(x) \le f(x) \le g(x)$ for all $x \ge 1$ and all of the functions are continuous and decreasing. Which of the following would guarantee that $\sum_{n=1}^{\infty} f(n)$ converges?

(a)
$$\int_{1}^{\infty} h(x) dx$$
 converges
(b) $\int_{1}^{\infty} f(x) dx$ converges
(c) $\int_{1}^{\infty} g(x) dx$ converges
(d) (a), (b), and (c)
(e) (b) and (c)

Name: _____

Part II: Free Response

FR Scores				
1		/4		
2		/6		
3	6	/4		
4	4	/6		
FR Total		/20		

- 1. Give examples of the following (you do not need to justify your answers):
 - (a) A sequence that is neither monotonic nor bounded.

 $\{(-1)^n e^n\}$

(b) A sequence that is monotonic but unbounded

$\{e^n\}$

(c) A sequence that is not monotonic but is bounded

 $\left\{(-1)^n\frac{1}{e^n}\right\}$

(d) A sequence that is monotonic and bounded.

$$\left\{\frac{1}{e^n}\right\}$$

2. Find the sum of the following series, or if it diverges, state that it diverges. You may leave your answer as a sum of fractions.

$$\sum_{n=2}^{\infty} \frac{1}{n^2 + 5n + 6} + \frac{5}{4^n}.$$

Show ALL work to receive full credits

$$\sum_{n=2}^{\infty} \frac{1}{n^2 + 5n + 6} + \frac{5}{4^n} = \frac{1}{4} + \frac{5}{12} = \frac{2}{3}$$

- 3. Show ALL work to receive full credits.
 - (a) Determine if the series $\sum_{n=10}^{\infty} \frac{10 \sin n}{n^4}$ is convergent or divergent. Clearly indicate what test you are using to justify your conclusion and state why it applies.

Since
$$0 < a_n = \frac{10 - \sin n}{n^4} \le \frac{11}{n^4} = b_n$$

and $\sum_{n=10}^{\infty} b_n$ Converges (by the *p*-test, *p* = 4 > 1)
 $\implies \sum_{n=10}^{\infty} a_n$ Converges (by the DCT)

Circle one: (Convergent, Divergent), by <u>DCT</u> Test.

(b) Suppose that you choose to estimate $\sum_{n=1}^{\infty} \frac{(-1)^n}{2+3^n}$ by adding the first 4 terms together. According to the Alternating Series Error Estimation Theorem, how large can the error of doing this estimate possibly be?

$$b_n = \frac{1}{2+3^n}$$
$$|s - S_4| \le b_5 = \frac{1}{2+3^5} = \left(\frac{1}{245}\right)$$

4. Determine whether the following series converges or diverges. Clearly indicate what test you are using to justify your conclusion and state why it applies.

$$1 + \frac{1 \cdot 2}{1 \cdot 3} + \frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5} + \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7} + \dots + \frac{n!}{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)} + \dots$$

Show ALL work to receive full credits.

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)! \quad 1 \cdot 3 \cdot 5 \cdots (2n-1)}{n! \quad 1 \cdot 3 \cdot 5 \cdots (2n-1)(2n+1)} = \frac{1}{2} < 1$$

 \implies the series converges by the Ratio test.

Version B:

 $#2: \lim_{n \to \infty} S_N = 1; \text{ Sum} = 1 + \frac{7}{20} = \frac{27}{20}$ $#3(\mathbf{a}): b_n = \frac{a}{n^2} \text{ where the constant } a \text{ can be any number} \ge 9. \sum b_n \text{ converges by } p\text{-test}, p = 2 > 1,$ $\sum a_n \text{ converges by DCT}.$

$$\#\mathbf{3}(\mathbf{b}):|\text{error}| \le \frac{1}{5^3 + 3} = \frac{1}{128}.$$

Version C: #2: $\lim_{n \to \infty} S_N = \frac{1}{5}$; Sum= $\frac{1}{5} + \frac{9}{2} = \frac{47}{10}$ #3(a): $b_n = \frac{a}{n^3}$ where the constant *a* can be any number ≥ 4 . $\sum b_n$ converges by *p*-test, p = 3 > 1, $\sum a_n$ converges by DCT.

 $\#\mathbf{3}(\mathbf{b}):|\text{error}| \le \frac{1}{42}.$

Version D: #2: $\lim_{n \to \infty} S_N = \frac{1}{4}$; Sum= $\frac{1}{4} + \frac{3}{10} = \frac{11}{26}$ #3(a): $b_n = \frac{a}{n^3}$ where the constant *a* can be any number ≥ 6 . $\sum b_n$ converges by *p*-test, p = 3 > 1, $\sum a_n$ converges by DCT.

 $\#\mathbf{3}(\mathbf{b}):|\text{error}| \le \frac{1}{74}.$

Multiple Choices:

Ver A	Ver B	Ver C	Ver D
E	Α	D	Α
D	С	E	E
D	D	С	В
В	E	E	Α
Α	D	E	В
D	С	D	E
В	С	В	С
C	В	С	D
Α	С	Α	С
E	В	В	С
	Ver A E D D B A D B C C A E	Ver A Ver B E A D C D D B E D C B C B C C B C B C B A C B C B C C B A C	Ver A Ver B Ver C E A D D C E D D C B E E A D E A D E A D E B C D B C B C B C A C A B C A B C A

Ver. A	Ver. B	Ver. C	Ver. D
1. d	е	d	d
2. (a) E	ЮСТ		
2. (c) d	iverges		
2 (a) I	OT (la l with	1 to she	ow the series

3. (a) DCT $(|a_n| \text{ with } \frac{1}{\sqrt{n}\sqrt{n}}$ to show the series is NOT absolute convergent); AST (to show the series is conditionally convergent)

3. (c) converges conditionally

4. b a a b

2. Determine if the series $\sum_{n=5}^{\infty} \frac{3-(-1)^n}{n}$ converges or diverges.

(a) Which test did you use? \underline{DCT}

(b) Show your work in determining whether the series converges or diverges.

$$b_n = \frac{2}{n} < \frac{3 - (-1)^n}{n} = a_n,$$

and
$$\sum b_n = \sum \frac{1}{n}$$
 diverges by p - series test $(p = 1)$

$$\Rightarrow \sum a_n = \sum \frac{3 - (-1)^n}{n} \text{ also diverges}$$

(c) The series (converges, diverges). (circle one of the choices)

3. Determine if the series $\sum_{n=5}^{\infty} \frac{(-1)^n}{\sqrt{n \ln n}}$ converges absolutely, , conditionally or diverges.

(a) Which test(s) did you use? **DCT** (to show it does not converge absolutely),

AST (to show it converges conditionally.)

(b) Show your work.

1.
$$\sqrt{n} \ln n < \sqrt{n} \cdot \sqrt{n}$$
 for all $n \ge 5$, $\Rightarrow |a_n| = \frac{1}{\sqrt{n} \ln n} > \frac{1}{\sqrt{n} \cdot \sqrt{n}} = \frac{1}{n}$
Since $\sum \frac{1}{n}$ diverges $(p = 1) \Rightarrow \sum |a_n|$ diverges (by DCT)
2. Since $\lim_{n \to \infty} \frac{1}{\sqrt{n} \ln n} = 0$ and $\frac{1}{\sqrt{n} \ln n} = 0$ is decreasing
 $\Rightarrow \sum \frac{(-1)^n}{\sqrt{n} \ln n}$ converges (by AST)
(1) and (2) $\Rightarrow \sum a_n$ converges conditionally.

(c) The series (converges absolutely, converges conditionally, diverges). (circle one)