Calculus I: MAC2311
Final Exam A

Name: \qquad

Instructions: multiple choice questions.

1. Approximate the area under the graph $f(x)=1+\sin ^{2}(\pi x)$ on the interval $[0,1 / 2]$ using a rightendpoint Riemann sum with 3 subintervals of equal length.
(A) $\frac{1}{3}$
(B) $\frac{2}{3}$
(C) $\frac{5}{6}$
(D) $\frac{9+\sqrt{3}}{12}$
(E) 1
2. Given $f^{\prime}(x)=e^{x}+\cos (x)$ and $f(0)=0$, find $f(x)$.
(A) $f(x)=e^{x}+\sin (x)-1$
(B) $f(x)=e^{x}+\sin (x)$
(C) $f(x)=e^{x}-\sin (x)-1$
(D) $f(x)=\ln (\sin (x))$
(E) none of the above
3. Consider the function $f(x)=\sqrt{3-x}$. Which of the following is the definition of $f^{\prime}(-1)$?
(A) $f^{\prime}(-1)=\lim _{x \rightarrow-1} \frac{\sqrt{3-x}-2}{x+1}$
(B) $f^{\prime}(-1)=\lim _{x \rightarrow \infty} \frac{\sqrt{3-x}-2}{x+1}$
(C) $f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{\sqrt{3-x-h}-\sqrt{3-x}}{h}$
(D) $f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{h}{\sqrt{3-x-h}-\sqrt{3-x}}$
4. Water flows from the bottom of a storage tank at a rate $r(t)=200-4 t$ liters per minute, where $0 \leq t \leq 50$. If at time $t=0$ there are 5,000 gallons of water in the tank, how many of the following are true?
(i) Between the times $t=5$ and $t=10,850$ gallons leave the tank
(ii) At $t=5$, there are only 850 gallons still in the tank.
(iii) At $t=10,1800$ gallons have left the tank.
(iv) At $t=50$, the tank is empty.
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
5. Evaluate $\int_{1}^{4}\left(\frac{3}{x}+e \cdot e^{-x}-x^{-3 / 2}\right) d x$
(A) $\ln (64)-\frac{1}{e^{3}}$
(B) $-\frac{19}{8}+\frac{1}{e^{3}}$
(C) $\frac{151}{64}-\frac{1}{e^{3}}$
(D) $\ln (81)+3 e-\frac{1}{e^{4}}$
(E) $3 \ln (4)+\frac{1}{e^{3}}-\frac{4}{3}$
6. Find $\int \sin (\cos (x)) \sin (x) d x$.
(A) $-\cos (\sin (x))+C$
(B) $\cos (\sin (x))+C$
(C) $\cos (\cos (x))+C$
$(D)-\cos (\cos (x))+C$
(E) none of the abov
7. Evaluate $\lim _{x \rightarrow 0} x^{4} \sin \left(\frac{1}{x}\right)$
(A) ∞
(B) 0
(C) 1
(D) The limit does not exist
8. If $\int_{0}^{1} f(x) d x=5$ and $\int_{0}^{1} g(x) d x=-3$, which of the following must be true?
(i) $\int_{0}^{1} f(x) g(x) d x=-15$
(ii) $\int_{0}^{1}[f(x)+g(x)] d x=2$
(iii) $f(x) \geq g(x)$ for all x in $[0,1]$
(A) (i) and (ii)
(B) $(i i)$
(C) $(i i i)$
(D) (ii) and (iii)
(E) $(i),(i i)$, and (iii)
9. A ladder 13 ft long rests against a vertical wall. If the bottom of the ladder slides away from the wall at a rate of $2 \mathrm{ft} / \mathrm{s}$, how fast is the angle that the ladder makes with the ground changing when the top of the ladder is 5 ft from the ground?
(A) $-\frac{1}{5}$
(B) $-\frac{10}{169}$
(C) $-\frac{1}{6}$
(D) $-\frac{2}{5}$
10. You are asked to find the minimal cost of materials to construct a rectangular storage container with an open top having a volume of $10 \mathrm{~m}^{3}$. The length of the base is twice the width. Material for the base cost 15 per square meter, and material for the sides costs 5 per square meter. Let C represent the cost, w the width of the box, l the length of the box, and h the height of the box. Which of the following equations should you optimize to find the minimal cost of materials to construct the box?
(A) $C=\frac{150}{w}+30 w^{2}$
(B) $C=\frac{150}{w}+60 w^{2}$
(C) $C=\frac{30}{w}+2 w^{2}$
(D) $C=\frac{30}{w}+w^{2}$
(E) none of the above
11. Which of the following is the Riemann sum for the function $f(x)=\ln (x)$ over the interval [2, 4] using left-endpoints and 4 subintervals of equal length?
(A) $\sum_{i=1}^{4} \ln \left(2+\frac{1}{2} i\right) \frac{1}{2}$
(B) $\sum_{i=0}^{3} \ln \left(2+\frac{1}{2} i\right) \frac{1}{2}$
(C) $\sum_{i=1}^{4} \ln \left(\frac{1}{2} i\right) \frac{1}{2}$
(D) $\sum_{i=0}^{3} \ln \left(\frac{1}{2} i\right) \frac{1}{2}$
12. Find the values of m and k such that $f(x)$ is continuous everywhere.

$$
f(x)=\left\{\begin{array}{lr}
2 x^{3}+x+7, & \quad x<-1 \\
m(x+1)+k, & -1 \leq x \leq 2 \\
x^{2}+2, & 2<x
\end{array}\right.
$$

(A) $m=\frac{2}{3}$ and $k=4$
(B) $m=\frac{1}{2}$ and $k=3$
(C) $m=\frac{2}{3}$ and $k=-4$
(D) $m=-\frac{2}{3}$ and $k=-4$
13. Let $f(x)=x^{2} g(\cos (2 x))$. Find $f^{\prime}(x)$.
(A) $2 x g(\cos (2 x))-2 x^{2} \sin (2 x) g^{\prime}(\cos (2 x)) \quad$ (B) $-2 x g^{\prime}(2 \sin (2 x))$
(C) $2 x g(\cos (2 x))+x^{2} \sin (2 x) g^{\prime}(\cos (2 x))$
(D) $2 x-2 \sin (2 x) g^{\prime}(\cos (2 x))$
(E) none of the above
14. If $x y^{2}+2 x y=8$ then at the point $(1,2), y^{\prime}$ is
(A) $-\frac{5}{2}$
(B) $-\frac{4}{3}$
(C) -1
(D) $-\frac{1}{2}$
(E) 0
15. The sum of two positive numbers is 16 . What is the smallest possible value of the sum of their squares?
(A) 128
(B) 162
(C) 130
(D) 256
(E) none of the above
16. Evaluate $\int_{1}^{e} \frac{\ln (x)}{x} d x$.
(A) $\frac{1}{3}$
(B) $\frac{1}{e^{2}}-1$
(C) $\frac{1}{2}$
(D) 0
(E) none of the above
17. Evaluate $\lim _{x \rightarrow \infty} x^{4} e^{-x}$
(A) 0
(B) 24
$(C) \infty$
(D) The limit does not exist
18. How many of the following are necessarily true?
(i) The Net Change Theorem can be stated as follows:

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

(ii) An indefinite integral is a function
(iii) A definite integral is a number.
$(i v)$ If $v(t)$ is the velocity function of a particle moving along a straight line, then $\int_{a}^{b} v(t) d t$ gives the difference in the position of the particle between times $t=a$ and $t=b$.
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
19. Evaluate $F^{\prime}(2)$, if $F(x)=\int_{1}^{x^{2}} \frac{\sin (t)}{t} d t$
(A) $\sin (4)$
(B) $\frac{\sin (4)}{4}$
(C) $2 \sin (2)$
(D) $\frac{2 \cos (2)-\sin (2)}{4}$
(E) 0
20. At $x=0$, for how many of the following is the function both increasing and concave up?
(i) $f(x)=-2 \cos (x)$
(ii) $g(x)=\ln (x+1)$
(iii) $h(x)=\tan ^{-1}(x) \quad(h(x)=\arctan (x))$
(iv) $k(x)=e^{x}+e^{-x}$
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
21. If $\int_{-1}^{0} f(x) d x=-1$ and $\int_{0}^{1} f(x) d x=2$, how many of the following must be true?
(i) $\int_{-1}^{1} f(x) d x=1$
(ii) $\int_{1}^{1} f(x) d x=0$
(iii) $\int_{0}^{2} f(x) d x=4$
(iv) $\int_{1}^{-1} f(x) d x=1$
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
22. A magic square is a 3×3 square of numbers from 1 to 9 in which the sum of any row, column, and diagonal is the same. The following square is missing a number. What number must be filled in in order for this square to be a magic square?

2	7	6
9	5	
4	3	8

(A) 1
(B) Look left
(C) Look left again
(D) Look further left
(E) Try the first one again

Calculus I: MAC2311

Name: \qquad
Final Exam B

Instructions: multiple choice questions.

1. If $\int_{a}^{b} f(x) d x=-7$ and $\int_{a}^{b} g(x) d x=3$, then $\int_{a}^{b}[-3 f(x)-2 g(x)] d x$ is equal to:
(A) -27
(B) 27
(C) -15
(D) 15
(E) None of the above
2. The acceleration of a particle moving along the horizontal axis is given by $a(t)=\sin (t)-\cos (t)$. The particles position at time $t=0$ is 2 and time $t=\frac{\pi}{2}$ is 3 , find the position at time $t=\pi$.
(A) 6
(B) 2
(C) 0
(D) $5+\frac{3 \pi}{2}$
(E) $5+2 \pi$
3. Which of the following is the area of a rectangle with perimeter 24 and maximum area.
(A) 30
(B) 36
(C) 0
(D) 1
(E) None of the above
4. If $f(x)$ is defined and continuous for $a \leq x \leq b$, divide $[a, b]$ into n subintervals of equal lenght $\Delta x=(b-a) / n$. Let $x_{0}(=a), x_{1}, x_{2}, \ldots, x_{n}(=b)$ be the endpoints of these subintervals and let x_{i}^{*} be any sample point in the subinterval $\left[x_{i-1}, x_{i}\right]$. The definite integral of $f(x)$ from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided the limit exists.
(A) True
(B) False
5. Estimate the area A under the curve $f(x)=1+x^{2}$ from $x=-1$ to $x=2$ using three rectangles and right endpoints.
(A) 3
(B) 5
(C) 6
(D) 8
(E) None of the above
6. Letting $u=\sin (x)$, which of the following is equal to $\int_{0}^{\pi / 2}(\sin (x))^{4} \cos (x) d x$
(A) $\int_{0}^{1} u^{4} d u$
(B) $\int_{1}^{0} u^{4} d u$
(C) $4 \int_{0}^{1} u^{4} d u$
(D) $\int_{0}^{-1} u^{4} d u$
(E) None of the above
7. Find the point on the line $y=1-x$ that is closest to the origin $(0,0)$.
(A) $(1,0)$
(B) $\left(\frac{1}{2}, \frac{1}{2}\right)$
(C) $(0,0)$
(D) $\left(\frac{1}{2},-\frac{1}{2}\right)$
(E) None of the above
8. Evaluate $\int_{0}^{1} \frac{3 x^{2}}{1+x^{3}} d x$
(A) 1
(B) $\ln (2)$
(C) $\ln (3)-\ln (2)$
(D) 0
(E) None of the above

