
MAC 2311 Exam 3 Review Spring 2018

This review, produced by the Broward Teaching Center, contains a collection of questions
 which are representative of the type you
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Find the average rate of change in the area of a circle as its radius changes from

(a) 2 to 3 cm.

(b) 2 to 2.1 cm.

(c) 2.5 to 2 cm.

Two resistors with resistance R1 and R2 (measured in Ohms, denoted Ω) are wired in parallel.
The net resistance, R, of the two obeys the rule

1

R
=

1

R1

+
1

R2

.

Suppose R1 and R2 are increasing at rates 0.3Ω/s and 0.2Ω/s respectively. How fast is R
changing at the moment when R1 = 80Ω and R2 = 100Ω?

A kite flying 100 feet above the ground moves horizontally at a speed of 8 feet per second. At
what rate is the angle between the string and the horizontal changing when 200 feet of string
has been let out?

Use linear approximation to estimate the following numbers.    Hint: interpret the numbers as values of a differentiable function.

(a) 143.9

Find the linearization for each of the functions at the prescribed place.

(a) f(x) = cos(x) at x = π/4.

(b) g(x) = ln(x− 1) at x = e.

1

x2
(c) h(x) = at x = 2.

(b)  (2018.1)−1

(c) (2018.1)5

√
 

Create a list of critical numbers for each function below.
3
√

(a) f(x) = x2(2x− 1)

(b) g(t) = 6t− 4 cos(3t)

(c) h(x) = 10xe3−x
2

Locate and describe any local extrema for the functions from the previous problem.7.
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Determine if the functions satisfy the hypotheses of the Mean Value Theorem on the intervals
specified. For those that do, list the numbers guaranteed to exist by the theorem; for those that
do not, explain why.

(a) f(x) = x3 + 2x2 − x on [−1, 2]

(b) g(t) = 8t+ e−3t on [−2, 3]

(c) h(x) =

{
x2 x ≤ 2

4x− 4 x > 2
on [0, 4]

(d) X(s) = 1− 1

s
on [−1, 2]

Suppose f(x) is continuous on [6, 15], differentiable on (6, 15), f(6) = −2, and f′(x) ≤ 10 for all x. 
What is the largest possible value of f(15)?                Hint: use MVT

Determine the intervals on which each of the following functions is increasing/decreasing.

(a) f(x) = x9/5 − x
(b) h(x) = 2 sin2(x)− 2x restricted to [0, π]

Find real numbers A and B such that the function f(x) = Ax3 + Bx2 + 1 has an inflection
point at (−1, 2).

12. Calculate the limits below, employing L’Hôpital’s rule as needed.

(a) lim
x→∞

e2018x + 1
e1729x

.

(b) lim
x→0

3x − 1

(c) lim
x→0

x
2 sin(x)− sin(2x)

x− sin(x)

(d) lim
t→∞

t2 e−t 

(e) lim
x→0+

xx

(f) lim
x→∞

√
x2 + 1−

√
x+ 1

13. Evaluate the limits below. If the limit does not exist, indicate why.

(a) lim
x→2

x2 + x− 6

x− 2

(b) lim
x→0

(
1

x
− 1

x2 + x

)
(c) lim

x→−4

√
x2 + 9− 5

x+ 4
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14.

15.
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16.

Evaluate the limits below. If the limit does not exist, indicate why.

(a) lim
x→∞

7x3 + x2 − 5

x3 − 2x+ 1

(b) lim
x→∞

4x5

3 − 2x5

(c) lim
x→∞

x− 3

x2 + 2x+ 1

(d) lim
x→∞

2x + 1
3x− 5

(e) lim
x→∞

etan
−1(x)

Let f(x) = x(6− x)2/3.

(a) Find any zeros for f(x), and determine where f is positive/negative.

(b) Determine the function’s end behavior.

(c) Determine where f is increasing/decreasing, and find any local extrema.

(d) Determine where f is concave up/concave down, and find any inflection points.

(e) Sketch a graph of y = f(x), labeling all of the features discussed above.

x

y

Determine all extrema, local and absolute.

(a) f(x) = 2x3 + 3x2 − 12x+ 4 on the interval [−4, 2].
(b) f(x) = 2x3 + 3x2 − 12x+ 4 on the interval [0, 2].

(c) g(t) = 2000− 10te5−t
2/8 on the interval [0, 10].




