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Calculus I: MAC2311

3. (7 pts) Find the location and value of the absolute maximum and minimum of the function
f(x) = 2x3 − 15x2 + 24x on [0, 5]. (Write your answer as a coordinate pair (x, y)).

4. (7pts) Evaluate lim
x→π

(π − x)tan(x)
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5. (7 pts) If f(x) = 3x5 + 5x4, find all of the inflection points of the function and the intervals on
which the graph is concave up and concave down. (Write your inflection points as coordinate pairs
(x, y))
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2. A farmer plans to build a rectangular enclosure for his pigs that is adjacent to a river. The enclosure
is to be 3,200 square meters. What dimensions would require the least amount of fencing if no fencing
is needed along the river?
Solution

Since the river can be used as a side of the enclosure, we only need fencing for the other three sides.
Let x be the length of the side parallel to the river, and y be the length of the sides perpendicular to
the river. Then we have

xy = 3200⇒ y =
3200

x
.

We need to minimize the amount of fencing used for this enclosure, which is

F = x + 2y = x + 2

(
3200

x

)
= x +

6400

x
.

F ′ = 1− 6400

x2
= 0⇒ x = ±

√
6400 = ±80. These are the critical points of F , which can potentially be

local extrema. We only test the positive value x = 80 because the side length of the enclosure cannot
be negative.

F ′′ = −6400

x3
(−2) =

12800

x3
. Then F ′′(80) => 0, and by the Second Derivative Test, we can conclude

that x = 80 is a local minimum. In this case, y =
3200

x
= 40.

So the dimensions of 80ft× 40ft would require the least amount of fencing, where 80 is the length of
the side parallel to the river.



3. Sketch the graph of a function f(x) that has to following properties:

• Local minimum value of f(−2) = 2

• Local maximum value of f(−1) = 3

• Point of inflection at the point (1, 1)

• Increasing on the intervals (−2,−1)

• Decreasing on the interval (−∞,−2) and (−1,∞)

• Concave upward on the intervals (−∞,−1) and (−1, 1)

• Concave downward on the interval (1,∞)

Solution

The graph may vary. Here is an example that could work.



4. Evaluate
lim
x→0

(1 + 2x)3/x.

Solution

lim
x→0

(1 + 2x)3/x = lim
x→0

exp(ln((1 + 2x)3/x))

= lim
x→0

exp

(
3

x
ln((1 + 2x))

)
= exp

(
lim
x→0

3 ln(1 + 2x)

x

)

No that the limit is in
0

0
form, so we use L’Hopital’s rule to evaluate it.

= exp

 lim
x→0

3

(
2

1 + 2x

)
1


= exp

(
lim
x→0

6

1 + 2x

)
= exp

(
6

1

)
= e6



5. You are driving on an interstate highway which has a speed limit of 65 mph. At 2:00 PM you
drive past a state trooper at milepost 110 while driving 63 mph. At 5:00 PM you drive past another
state trooper at milepost 320 while driving 59 mph. You did not drive past any other state troopers
on your trip. Two weeks later you get a speeding ticket in the mail. Explain how the state troopers
could use the Mean Value Theorem to determine that you were speeding.
Solution

Use s(t) to denote the position of you at a given time t, with t = 0 at 2:00 PM in hours, then s(0) = 110
and s(3) = 320. Then by the Mean Value Theorem, there exists 0 < c < 3 such that

s′(c) =
s(3)− s(0)

3− 0
=

320− 110

3
=

210

3
= 70.

This implies that there was a time c between 2:00 PM and 5:00 PM such that you were traveling at
70 mph at time c, which was above the speed limit of 65 mph. Therefore, you were indeed speeding.




