## Calculus I: MAC2311

Name: $\qquad$
Midterm 3 A

Part I Instructions: multiple choice questions.

1. The linearization of $f(x)=\sqrt[3]{1+3 x}$ at $a=0$ is given by $L(x)=x+1$. Use this to approximate $\sqrt[3]{1.03}$.
(A) 2.03
(B) 1.01
(C) 1.03
(D) 1.003
$(E)$ None of the above
2. The elevation $h$ (in feet above the ground) of a stone dropped from a height of 1000 ft is modeled by the equation $h(t)=1000-16 t^{2}$, where $t$ is measured in seconds and air resistance is neglected. Use differentials to approximate the change in elevation over the interval $3 \leq t \leq 3.1$ seconds.
$(A) \Delta h \approx-9.6 \mathrm{ft}$
$(B) \Delta h \approx-4.8 \mathrm{ft}$
(C) $\Delta h \approx-846.4 \mathrm{ft}$
$(D) \Delta h \approx-118 \mathrm{ft}$
$(E)$ None of the above
3. How many of the following statements are true concerning the graph of $f(x)$ given below

(i) $f^{\prime \prime}(x) \geq 0$ for all $x$-values where it exists
(ii) $f(x)$ has exactly three critical numbers
(iii) $f(x)$ has exactly one local maximum
(iv) $f^{\prime}(x) \geq 0$ for all $x \leq 0$
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
4. Evaluate $\lim _{x \rightarrow 1} \frac{\ln (x)}{1-x}$
(A) 0
(B) 1
(C) -1
$(D) \infty$
$(E)$ Does not exist
5. If $f(x)=-x^{2}+4 x+3+2 e^{x}$, then how many of the following are true:
(i) The graph of the function has an inflection point at $x=1$.
(ii) The function is decreasing at $x=0$
(iii) The function has two inflection points
(iv) The function is concave downward at $x=\ln 2$
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
6. Using the graph of $f(x)$ below, what are the critical points of $f(x)$ ?

(A) $x=-3,-1,1,2,3 \quad$ (B) $x=-1,1,2$ only $\quad(C) x=-1,2$ only $\quad(D) x=-1$ only $\quad(E)$ None of the above
7. If $f(x)=3 x \ln (x)$, then the function is increasing on which of the following intervals:
(A) $\left(e^{-1}, \infty\right)$
(B) $(1, e)$
(C) $(0, e)$
(D) $(0, \infty)$
(E) $(0,1)$
8. Determine if the Mean Value Theorem applies to the function $f(x)=x^{3}-2 x$ on the interval $[-2,2]$. If not, state why. If so, find all values of $c$ guaranteed to exist by the Mean Value Theorem.
(A) Mean Value Theorem does not apply because $f(x)$ is not continuous on $[-2,2]$.
(B) Mean Value Theorem does not apply because $f(x)$ is not differentiable on $(-2,2)$.
(C) Mean Value Theorem does not apply because $f(-2) \neq f(2)$.
(D) Mean Value Theorem applies; $c= \pm \sqrt{\frac{2}{3}}$.
(E) Mean Value Theorem applies; $c= \pm \frac{2}{\sqrt{3}}$.
9. Consider $f(x)=\frac{1}{(x-2)^{2}}$. For which of the following intervals can we apply Rolle's Theorem to $f(x)$ ?
(A) only $[1,3]$
(B) only $[2,4]$
(C) $[2,4]$ and $[3,7]$
(D) only $[3,7]$
(E) None of the above
10. Evaluate $\lim _{x \rightarrow-1} \frac{x-3}{\sin (\pi x)+x^{2}+1}$
(A) 0
(B) 1
(C) -2
(D) $-\infty$
(E) None of the above

Calculus I: MAC2311
Midterm 3 A

Name: $\qquad$

Part II Instructions: free response questions

For Instructor Use Only:

| FR 1 |  |
| :---: | :--- |
| FR 2 |  |
| FR 3 |  |
| FR 4 |  |
| FR 5 |  |
| Total Points |  |

3. ( 7 pts ) Find the location and value of the absolute maximum and minimum of the function $f(x)=2 x^{3}-15 x^{2}+24 x$ on $[0,5]$. (Write your answer as a coordinate pair $(x, y)$ ).
4. (7pts) Evaluate $\lim _{x \rightarrow \pi}(\pi-x)^{\tan (x)}$
5. (7 pts) If $f(x)=3 x^{5}+5 x^{4}$, find all of the inflection points of the function and the intervals on which the graph is concave up and concave down. (Write your inflection points as coordinate pairs $(x, y))$

Calculus I: MAC2311
Name:
Midterm 3 B

Part I Instructions: multiple choice questions

Calculus I: MAC2311
3. Which of the following is the area of a rectangle with perimeter 20 and maximum area.
(A) 20
(B) 1
(C) 0
(D) 25
(E) None of the above
7. Find the point on the line $y=x+1$ that is closest to the origin $(0,0)$.
(A) $(0,1)$
(B) $\left(\frac{1}{2},-\frac{1}{2}\right)$
(C) $(0,0)$
(D) $\left(-\frac{1}{2}, \frac{1}{2}\right)$
(E) None of the above
9. Suppose you are trying to construct a box (drawn below) with a square bottom and an open top out of 20 square inches of material with maximum volume. Which of the following is the function you will want to maximize?

$\begin{array}{llll}\text { (A) } V=\frac{20-x^{2}}{4 x} & \text { (B) } V=x^{2} \cdot \frac{20-x^{2}}{4 x} & \text { (C) } V=x \cdot \frac{20-x^{2}}{4 x} & \text { (D) } V=x^{3}\end{array} \quad(E)$ None of the above

Calculus I: MAC2311
Midterm 3 B

Part II Instructions: free response questions

For Instructor Use Only:

| FR 1 |  |
| :---: | :--- |
| FR 2 |  |
| FR 3 |  |
| FR 4 |  |
| FR 5 |  |
| Total Points |  |

2. A farmer plans to build a rectangular enclosure for his pigs that is adjacent to a river. The enclosure is to be 3,200 square meters. What dimensions would require the least amount of fencing if no fencing is needed along the river?
3. Sketch the graph of a function $f(x)$ that has to following properties:

- Local minimum value of $f(-2)=2$
- Local maximum value of $f(-1)=3$
- Point of inflection at the point $(1,1)$
- Increasing on the intervals $(-2,-1)$
- Decreasing on the interval $(-\infty,-2)$ and $(-1, \infty)$
- Concave upward on the intervals $(-\infty,-1)$ and $(-1,1)$
- Concave downward on the interval $(1, \infty)$

4. Evaluate

$$
\lim _{x \rightarrow 0}(1+2 x)^{3 / x}
$$

5. You are driving on an interstate highway which has a speed limit of 65 mph . At 2:00 PM you drive past a state trooper at milepost 110 while driving 63 mph . At 5:00 PM you drive past another state trooper at milepost 320 while driving 59 mph . You did not drive past any other state troopers on your trip. Two weeks later you get a speeding ticket in the mail. Explain how the state troopers could use the Mean Value Theorem to determine that you were speeding.
