Calculus I: MAC2311

Exam 2

<u>Part I Instructions</u>: 14 multiple choice questions

1. Find
$$f''(x)$$
 for the function $f(x) = \frac{x}{e^x}$
(A) $\frac{-x+2}{e^x}$ (B) $\frac{x+2}{e^x}$ (C) $\frac{-x-2}{e^x}$ (D) $\frac{x-2}{e^x}$
Need Quotient $g_1^{f'} - f_0^{f}$
Rule g_2^{2}
 $f(x) = \frac{x}{e^x}$ $f = x$ $g = e^x$
 $f'(x) = \frac{e^x(1) - xe^x}{(e^x)^2} = \frac{e^x(1-x)}{(e^x)^2} = \frac{1-x}{e^x}$

Quotient Rule Jain:

$$f'(x) = \frac{1-x}{e^{x}}$$
, $f = 1-x$, $g = e^{x}$
 $f''(x) = \frac{1-x}{e^{x}}$, $f' = -1$, $g' = e^{x}$
 $f''(x) = \frac{e^{x}(-1) - (1-x)(e^{x})}{(e^{x})^{2}} = \frac{e^{x}(-1 - (1-x))}{(e^{x})^{2}}$
 $= \frac{-1 - (1-x)}{e^{x}} = \frac{-1 - 1 + x}{e^{x}} = \frac{x-z}{e^{x}}$

2. Suppose g(x) is differentiable for any real number x. Let $f(x) = \frac{e^{g(x)}}{x^2 + 3}$. Find f'(x).

$$(A) \frac{2xe^{g'(x)} - (x^{2} + 3)e^{g(x)}g'(x)}{(x^{2} + 3)^{2}} \quad (B) \frac{2xe^{g(x)} - 2xe^{g(x)}g'(x)}{(x^{2} + 3)^{2}} \quad (C) \frac{2xe^{g(x)} - (x^{2} + 3)e^{g(x)}g'(x)}{(x^{2} + 3)^{2}}$$

$$(D) \frac{2xe^{g(x)}g'(x) - 2xe^{g(x)}}{(x^{2} + 3)^{2}} \quad (E) \frac{(x^{2} + 3)e^{g(x)}g'(x) - 2xe^{g(x)}}{(x^{2} + 3)^{2}}$$

$$f(x) = \underbrace{e}_{X^{2} + 3}^{g(x)} \quad Need \quad Quotient \\ \chi^{2} + 3 \qquad g^{2}$$

$$f = e_{g}^{g(x)} \quad g = x^{2} + 3$$

$$f' = e_{g}^{g(x)} \quad g'(x) \qquad g' = 2x$$

$$f'(x) = \underbrace{(x^{2} + 3)(e_{g}^{g(x)} - g'(x)) - e_{g}^{g(x)}(2x)}{(x^{2} + 3)^{2}}$$

3. Determine the derivative of $f(x) = e^{\cos^2(x)}$.

* Answer key was incorrect *

4. If $f(x) = \cot^{-1}(x)$ $(f(x) = \operatorname{arccot}(x))$, then find an expression for f''(x).

(A) $f''(x) = \frac{2x}{(1+x^2)^2}$	(B) $f''(x) = \frac{-2x}{(1+x^2)^2}$
(C) $f''(x) = \frac{1 - 2x + x^2}{(1 + x^2)^2}$	(D) $f''(x) = \frac{-x^2 + 2x - 1}{(1 + x^2)^2}$

$$f(x) = cot^{-1}(x)$$

f'(x)=	-	(Memorize)
	$ +\chi^2$	

 $\frac{gf'-fg'}{g^2} \quad \text{for} \quad f''(x)$ $g = 1+x^2$ Quotient Kule f = -1

OR Rewrite

$$a_{s} - 1(1+x^{2})^{-1}$$

and use
Chain Rule

$$f' = 0 \qquad \qquad g' = 2x$$

$$f''(x) = (1+x^2)(0) - (-1)(2x) = \frac{2x}{(1+x^2)^2}$$

$$(1+x^2)^2$$

q'= 2x

5. Use implicit differentiation to find y' for the equation $xy = \sin(y)$.

$$(A) \ y' = \frac{-y}{x - \cos(y)} \qquad (B) \ y' = \frac{y}{x - \cos(y)} \qquad (C) \ y' = \frac{x - \cos(y)}{-y} \qquad (D) \ y' = \frac{x - \cos(y)}{y}$$
$$(D) \ y' = \frac{x - \cos(y)}{y}$$

Prod. Rule
$$gf' + fg'$$

 $f = x$ $g = y$
 $f' = 1$ $g' = 1 \frac{dy}{dx}$
 $y(1) + (x)(1\frac{dy}{dx}) = \cos(y)(\frac{dy}{dx})$
 $y + x \frac{dy}{dx} = \cos(y)\frac{dy}{dx}$
 $x \frac{dy}{dx} - \cos(y)\frac{dy}{dx} = -y$
 $\frac{dy}{dx}(x - \cos(y)) = -y$
 $\frac{dy}{dx} = \frac{-y}{x - \cos(y)}$

6. Which of the following is equal to the derivative of $g(x) = 3x^2 + \sqrt[3]{x^2} + 4$

$$(A) g'(x) = 6x + \frac{1}{3\sqrt[3]{x}} \quad (B) g'(x) = 3x + \frac{1}{3\sqrt[3]{x}} \quad (C) g'(x) = 3x + \frac{2}{3\sqrt[3]{x}} + 4 \qquad (D) g'(x) = 6x + \frac{2}{3\sqrt[3]{x}}$$

$$g(x) = 3\chi^{2} + \chi^{2/3} + 4 \qquad \frac{2}{3} - \frac{3}{3} = -\frac{1}{3}$$

$$g'(x) = 6\chi + \frac{2}{3}\chi^{-1/3}$$

$$g'(x) = 6\chi + \frac{2}{3}\chi^{-1/3}$$

$$g'(x) = 6\chi + \frac{2}{3\sqrt[3]{x}}$$

Need chain rule

7. Let $f(x) = (1 + \sqrt{x})^{\frac{3}{3}}$. What is f'(x)? (A) $\frac{1}{3}(1 + x^{\frac{1}{2}})^{-\frac{2}{3}}$ (B) $\frac{1}{6}x^{-\frac{1}{2}}(1 + x^{\frac{1}{2}})^{-\frac{2}{3}}$ (C) $\frac{1}{3}(1 + \frac{1}{2}x^{-\frac{1}{2}})^{-\frac{2}{3}}$ (D) $\frac{1}{3}(\frac{1}{2}x^{-\frac{1}{2}})^{-\frac{2}{3}}$ (E) $\frac{1}{2}x^{-\frac{1}{2}}(1 + x^{\frac{1}{2}})^{-\frac{2}{3}}$ $f(X) = (1 + \sqrt{X})^{\frac{1}{3}}$ $f(X) = (1 + \chi^{\frac{1}{2}})^{\frac{1}{3}}$ $f(X) = \frac{1}{3}(1 + \chi^{\frac{1}{2}})^{-\frac{2}{3}}(\frac{1}{2}x^{-\frac{1}{2}})$ $f^{\frac{1}{2}}(X) = \frac{1}{3}(1 + \chi^{\frac{1}{2}})^{-\frac{2}{3}}(\frac{1}{2}x^{-\frac{1}{2}})$ $f^{\frac{1}{2}}(X) = \frac{1}{6}\chi^{-\frac{1}{2}}(1 + \chi^{\frac{1}{2}})^{-\frac{2}{3}}$ 8. What is the slope of the line tangent to the graph of $y = 2^x - 3^x + 4^x$ when x = 0?

$$(A) \ln \left(\frac{3}{2}\right)$$

$$M(Y) = M(2^{X})$$

$$M(Y) = M(2^{X})$$

$$M(Y) = X Ln(2)$$

$$(A) = M(2)$$

$$(A) = M($$

9. What is an equation for the line tangent to the function $f(x) = 6x\sin(x) + \pi$ at $x = \frac{\pi}{2}$?

(A)
$$y = 6x$$

(B) $y = 6x + \pi$
(C) $y = 6x - \pi$
(D) $y = 6x + 6$
(E) $y = 6x - 6$
Using the point
 $f(\frac{\pi}{2}) = 6(\frac{\pi}{2}) \sin(\frac{\pi}{2}) + \pi$
 $f(\frac{\pi}{2}) = 6(\frac{\pi}{2}) \sin(\frac{\pi}{2}) + \pi$
 $f(\frac{\pi}{2}) = 3\pi (1) + \pi = 4\pi$
Slope: find $f'(x)$
 $f'(x) = 6\sin(x) + 6x\cos(x)$
 $f'(\frac{\pi}{2}) = 6(1) + 6(\frac{\pi}{2})(0) = 6$
Use point slope form:
 $y - y_{7} = m(x - x_{1})$
 $y - 4\pi = 6(x - \frac{\pi}{2})$
 $y = 6x - 3\pi + 4\pi$
 $y = 6x + \pi$

10. Let
$$f(x)$$
 and $g(x)$ be differentiable functions such that $g(3) = 1$ Which of the following is equal
to $h'(3)$ where $h(x) = f(x)g(x) + \frac{f(x)}{g(x)}$?
(A) 2 (B) $2f(3)$ (C) $2f'(3)$ (D) $2g'(3)$ (E) None of these
 $h(x) = f(x)g'(x) + \frac{f(x)}{g'(x)}$
 $h'(x) = f(x)g'(x) + f'(x)g(x) + \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$
 $h'(3) = f(3)g'(3) + f'(3)g(3) + \frac{g(3)f'(3) - f(3)g'(3)}{(g(3))f'(3) - f(3)g'(3)}$
 $h'(3) = f(3)g'(3) + f'(3)f'(3) - \frac{f(3)g'(3)}{(g(3))f'(3) - f(3)g'(3)}$
 $h'(3) = f(3)g'(3) + f'(3)f'(3) - \frac{f(3)g'(3)}{(g(3))f'(3) - f(3)g'(3)}$
 $h'(3) = 2f'(3)$

11. The mass of a length of wire is $m(x) = x(1 + 2\sqrt{x})$ kilograms, where x is the length of the wire measured in meters. The **linear density** of the wire is the rate of change of the mass m with respect to x. Find the linear density of the wire (expressed in kg/m) when x = 4 m.

$(A) \ 1$	(B) 4	(C) 7	$(D) \ 10$
rin. den	sity = dm dx	and	×=4
m(x)= >	$\langle (1+2\sqrt{\times})^{3/2}$) = X(1	+ 2x ^{1/2})
= >	χ + , χ	Va	
m'(x)=	$1 + 2\left(\frac{3}{2}\right)$	X 72	
m'(x)=	$1 + 3 \times \frac{1}{2}$	- 1+35	Ż
m′(4)=	1+ 314		
ŝ	$ +3(2)^{-}$	7	

12. Let h(x) = f(g(x)). Based on the following table of values for f(x), f'(x), g(x), and g'(x), find h'(2).

x	0	1	2	3
f(x)	0	2	1	1
f'(x)	2	3	1	2
g(x)	2	1	3	3
g'(x)	0	1	3	2

(A) 0

$$(B)$$
 1

$$(C)$$
 2

$$(D) \ 3$$

(E) 6

$$h(x) = f(q(x))$$

$$h'(x) = f'(q(x)) \cdot q'(x)$$

$$h'(2) = f'(q(2)) \cdot q'(2)$$

$$= f'(3) \cdot 3$$

$$= 2 \cdot 3 = 6$$

13. Let
$$f(x) = \sec^2(x)$$
. What is $f'(x)$?

(A)
$$\frac{1}{\sin^2(x)}$$
 (B) $-2\sec^3(x)$ (C) $2\sec(x)$

$$(D) \ 2 \sec^2(x) \tan(x)$$

(E) None of these

$$f(x) = \sec^{2}(x)$$

$$= \frac{1}{(\omega_{S}(x))^{2}} = (\cos(x))^{-2}$$

$$f'(x) = -2(\cos(x))^{-3} \cdot (-\sin(x))$$

$$f'(x) = \frac{2\sin(x)}{(\cos(x))^{3}}$$

$$= 2 \frac{\sin(x)}{\cos(x)} \cdot \frac{1}{(\cos(x))^{2}}$$

=
$$2 + 2m(x) sec^{2}(x)$$

14. For which of the following x-values does the curve $x(x-1) = y^3$ have a vertical tangent line?

(A)
$$x = 0$$
 only (B) $x = 1$ only (C) $x = 0, 1$ only (D) $x = 0, 1, -1$ (E) No such value
 $X(x-1) = y^{3}$
 $d(x^{2} - x) = d(y^{3})$ (Distribute to avoid
 $Prod$. Rule)
 $2x - 1 = 3y^{2} \frac{du}{dx}$
 $dy = \frac{2x - 1}{3y^{2}}$
Undefined if $3y^{2} = 0 \rightarrow y = 0$
Plug $y = 0$ into original
 $X(x-1) = 0^{3}$
 $X(x-1) = 0$
 $x = 0, x = 1$

Part III Instructions: 6 multiple choice questions

2. Suppose that A = B + C and A, B, and C are functions of t. If $\frac{dB}{dt} = 3$ and $\frac{dC}{dt} = -4$ what is $\frac{dA}{dt}$?

(A) 0 (B) 1 (C) 7 (D)
$$-1$$
 (E) None of the above

l

$$\frac{d}{dt} \begin{pmatrix} A \end{pmatrix} = \frac{d}{dt} \begin{pmatrix} B + C \end{pmatrix}$$

$$\frac{d}{dt} = \frac{d}{dt} \begin{pmatrix} B + C \end{pmatrix}$$

7. If $f(x) = \ln(\sqrt{e^{\sin(x)}})$, then $f'(\frac{\pi}{3})$ equals:

$$f(x) = \frac{1}{\sqrt{2}} \qquad (C) \frac{\sqrt{3}}{2} \qquad (D) \frac{1}{2} \ln(e^{\pi}) \qquad (E) \frac{\sqrt{3}}{4}$$

$$f(x) = \frac{1}{\sqrt{e^{\sin(x)}}} \cdot \frac{d}{dx} \left(\sqrt{e^{\sin(x)}} \right)$$

$$\frac{d}{dx} = \left(e^{\sin(x)} \right)^{1/2} \cdot e^{\sin(x)} \cdot \cos(x)$$

$$= \frac{1}{2} \left(e^{\sin(x)} \right)^{-1/2} \cdot e^{\sin(x)} \cdot \cos(x)$$

$$F(x) = \frac{1}{2} \cos(x)$$

$$= \frac{1}{2} \cos(x)$$

$$f'\left(\frac{\pi}{3}\right) = \frac{1}{2} \cos(\frac{\pi}{3}) = \frac{1}{2} \left(\frac{1}{2}\right) = \frac{1}{4}$$

13. If $f(x) =$ tangent line?	$5\ln(3x^3+18x)$, at how	many different points $f'(x) = 0$	on the graph does	there exist a ho	orizontal
(A) 0	$(B) \ 1$	(C) 2	$(D) \ 3$		(E) 4
4	(x)= 5)	$\ln(3x^3)$	lQX)	chsin duriv.	nue of inside
f	'(x) = 5 (3x ³ +18x	-)(9×	2+18	
+	`'(x)≈ 5 ($\frac{9\chi^2+18}{3\chi^3+19}$	$\left(\begin{array}{c} - \\ \end{array} \right)$		
_	f'(x)= 5	$\left(\frac{9(\chi^2+3\chi(\chi^2+3\chi))}{3\chi(\chi^2+3\chi)}\right)$	$\frac{2}{6}$		
-	$f'(x) = \frac{4}{3}$	$\frac{5(x^2+z)}{5(x^2+b)}$	= 0		
	45	$(\chi^{2}+2)$	- 0		
		$x^{2}+2=0$ $x^{2}=-2$	> 	mpossi	ble

14. The volume of a sphere is given by $V = \frac{4}{3}\pi r^3$ with radius r. Suppose the sphere expands as time passes. Which of the following gives $\frac{dV}{dt}$ in terms of $\frac{dr}{dt}$?

 $(A) \ \frac{dV}{dt} = \frac{4}{3}\pi r^3 \frac{dr}{dt} \qquad (B) \ \frac{dV}{dt} = 4\pi r^2 \qquad (C) \ \frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$ $(D) \ \frac{dV}{dt} = 4\pi \left(\frac{dr}{dt}\right)^2 \qquad (E) \text{ None of the above}$

$$V = \frac{4}{3} \pi r^{3}$$

$$\frac{dV}{dt} = 3(\frac{4}{3}) \pi r^{2} \frac{dr}{dt}$$

$$= 4\pi r^{2} \frac{dr}{dt}$$

Calculus I: MAC2311

Name: _____

Exam 2

<u>Part II Instructions</u>: 5 free response questions

For Instructor Use Only:

FR 1	
FR 2	
FR 3	
FR 4	
FR 5	
Total Points	

- 1. Complete both parts of the problem concerning the function $f(x) = 2x 4\cos(x)$.
- (a) How many tangent lines to the function f(x) are horizontal in the interval $[0, 2\pi]$?

$$f'(x) = 2 + 4\sin(x) = 0$$

$$2 + 4\sin(x) = 0$$

$$4\sin(x) = -2$$

$$\sin(x) = -\frac{2}{4}$$

$$\sin(x) = -\frac{1}{2} \rightarrow x = \frac{7\pi}{6}, \frac{1\pi}{6}$$
(b) Write down the equations of these horizontal tangent lines.
$$Horiz \cdot tangent \quad for \quad x = \frac{7\pi}{6}$$

$$f(\frac{7\pi}{6}) = 2(\frac{7\pi}{6}) - 4\cos(\frac{7\pi}{6})$$

$$= \frac{7\pi}{3} - 4(\frac{-\sqrt{3}}{2})$$

$$f'(x) = 0$$
So there are 2
horizontal tangent tangent tangent lines.
$$f(\frac{11\pi}{6}) = 2(\frac{11\pi}{6}) - 4\cos(\frac{11\pi}{6})$$

$$= \frac{11\pi}{3} - 4(\frac{13}{2})$$

$$y = \frac{71}{3} + 2\sqrt{3}$$

 $=\frac{711}{3}+2\sqrt{3}$

$$= \frac{||\Pi|}{3} - 2\sqrt{3}$$

$$y = \frac{||T|}{3} - 2\sqrt{3}$$

2. Find an equation for the line tangent to the graph $y = \frac{(x^2 + 3x + 1)e^x}{\cos(x)}$ at x = 0.

Plug in
$$X = 0$$

 $y' = cos(0) ((0^{2} + 3(0) + 1)(e^{0}) + (2(0) + 3)(e^{0})] - [(0^{2} + 3(0) + 1)(e^{0}) - (cos(0))]$
 $(cos(0))^{2}$
 $y' = (1)[(1)(1) + (0 + 3)(1)] - ((1)(1)(0))$
 1^{2}
 $y' = (1 + 3) = 4 - 4$

Use
$$print-slope form$$

 $y-y_{1} = m(x-x_{1})$
 $y-1 = 4(x-0)$
 $y-1 = 4x$
 $y = 4x+1$

3. Find all points on the curve $x^2 - xy + y^2 = 3$ at which there is a vertical tangent line. Write your answer(s) in the form (x, y) for each coordinate pair.

$$d_{x}(x^{2}-xy+y^{2}) = d_{x}^{2}$$

$$2x - (x \frac{dy}{dx} + y) + 2y \frac{dy}{dx} = 0$$

$$Prod. Rule$$

$$2x - x \frac{dy}{dx} - y + 2y \frac{dy}{dx} = 0$$

$$2y \frac{dy}{dx} - x \frac{dy}{dx} = y - 2x$$

$$\frac{dy}{dx} (2y - x) = y - 2x$$

$$\frac{dy}{dx} = \frac{y - 2x}{2y - x}$$

$$yrdefined when 2y - x = 0 \rightarrow 2y = x$$

$$(2y)^{2} - (2y)y + y^{2} = 3$$

$$4y^{2} - 2y^{2} + y^{2} = 3$$

$$y^{2} = i - y - y^{2} = 1$$

$$2y = x$$

when $y = 1 \rightarrow x = 2(1) = 2$
when $y = -1 \rightarrow x = 2(-1) = -2$
 $(2, 1)$ and $(-2, -1)$

4. Evaluate the following:

•
$$\frac{d}{dx} \left(\sin^{-1}(x) \right), \left(\frac{d}{dx} (\arcsin(x)) \right)$$

=
$$\frac{1}{\sqrt{1-\chi^2}}$$
 * Memorize *

•
$$\frac{d}{dx}(\csc^{-1}(x^{2})), \left(\frac{d}{dx}(\operatorname{arccsc}(x^{2}))\right)$$

(WCCCC(x))'= $\frac{1}{|x|\sqrt{x^{2}-1}}$ = $\frac{-1}{|x^{2}|\sqrt{x^{4}-1}}$ • $(2x) = \frac{-2}{x\sqrt{x^{4}-1}}$

•
$$\frac{d}{dx}(\tan^{-1}(3x)), \left(\frac{d}{dx}(\arctan(3x))\right)$$

= $\frac{1}{1+(3x)^2}, (3) = \frac{3}{1+q^2x^2}$
 $\frac{1}{1+q^2x^2}$

•
$$\frac{a}{dx}(\cos^{-1}(2x+1)), \left(\frac{a}{dx}(\arccos(2x+1))\right)$$

($\frac{a}{dx}(\arccos(2x+1))$)
• $(2) = \frac{-2}{\sqrt{1-(2x+1)^2}}$
• $(2) = \frac{-2}{\sqrt{1-(2x+1)^2}}$

5. A stone is thrown upward from a 60 meter tall cliff so that its height above the ground is $h(t) = 60 + 4t - t^2$ for $t \ge 0$.

(a) When does the stone reach its highest point?

$$v(t) = h'(t) = 4 - 2t = 0$$

 $4 = 2t$
 $t = 2$

(b) When does the stone hit the ground?

$$h(t) = 0 \qquad t = 10$$

$$b(t) = 0 \qquad t = 10$$

$$b(t) = 0 \qquad t = 0$$

$$t^{2} - 4t - 60 = 0$$

$$(t - 10)(t+16) = 0$$
(c) What is the total vertical distance traveled by the stone from when it is thrown to when it hits the ground?

$$\int highest + f - stort + f = 1 \text{ ground} - highest + p+1$$

$$\int h(2) - h(0) + h(10) - h(2)$$

$$\int (64 - 60) + (0 - 64)$$

$$\int (64 - 60) + (0 - 64)$$

$$\int (64 - 60) + (0 - 64)$$

Calculus I: MAC2311

Name: _____

Part IV Instructions: 2 free response questions

For Instructor Use Only:

FR 1	
FR 2	
Total Points	

1. (7 pts) Use logarithmic differentiation to find the derivative of $f(x) = \sqrt{\frac{x^2 \cos^3(x)}{e^x \sqrt{x}}}$.

2. (7 pts) Suppose a 13 foot ladder rests against a wall. If the bottom of the ladder slides away from the wall at a rate of 3 feet per second, at what rate does the angle the ladder makes with the ground change when the top of the ladder is 5 feet from the ground?

