Calculus I: MAC2311
Name: $\frac{\text { Kely }}{j}$
Exam 2

1. Find $f^{\prime \prime}(x)$ for the function $f(x)=\frac{x}{e^{x}}$

$$
\text { (A) } \frac{-x+2}{e^{x}}
$$

$$
\text { (B) } \frac{x+2}{e^{x}}
$$

(C) $\frac{-x-2}{e^{x}}$ (D) $\frac{x-2}{e^{x}}$

Need
Quotient
Rule $\quad \frac{g f^{\prime}-f g^{\prime}}{g^{2}}$

$$
\begin{array}{lll}
f(x)=\frac{x}{e^{x}} \quad f=x & f^{\prime}=1 & g=e^{x} \\
g^{\prime}=e^{x} \\
f^{\prime}(x)=\frac{e^{x}(1)-x e^{x}}{\left(e^{x}\right)^{2}}=\frac{e^{x}(1-x)}{\left(e^{x}\right)^{2}}=\frac{1-x}{e^{x}}
\end{array}
$$

Quotient Rule again:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1-x}{e^{x}} \quad \begin{array}{l}
f=1-x
\end{array} \quad g=e^{x} \\
f^{\prime}(x) & =\frac{e^{x}(-1)-(1-x)\left(e^{x}\right)}{\left(e^{x}\right)^{2}}=\frac{e^{\prime}(-1-(1-x))}{\left(e^{x}\right)^{2}} \\
& =\frac{-1-(1-x)}{e^{x}}=\frac{-1-1+x}{e^{x}}=\frac{x-2}{e^{x}}
\end{aligned}
$$

2. Suppose $g(x)$ is differentiable for any real number x. Let $f(x)=\frac{e^{g(x)}}{x^{2}+3}$. Find $f^{\prime}(x)$.

$$
(A) \frac{2 x e^{g^{\prime}(x)}-\left(x^{2}+3\right) e^{g(x)} g^{\prime}(x)}{\left(x^{2}+3\right)^{2}} \quad \text { (B) } \frac{2 x e^{g(x)}-2 x e^{g(x)} g^{\prime}(x)}{\left(x^{2}+3\right)^{2}}
$$

$$
\text { (D) } \frac{2 x e^{g(x)} g^{\prime}(x)-2 x e^{g(x)}}{\left(x^{2}+3\right)^{2}} \quad(E) \frac{\left(x^{2}+3\right) e^{g(x)} g^{\prime}(x)-2 x e^{g(x)}}{\left(x^{2}+3\right)^{2}}
$$

$$
\begin{aligned}
& f(x)=\frac{e^{g(x)}}{x^{2}+3} \quad \begin{array}{l}
\text { Need Quotient } \\
\text { Rule }
\end{array}: \frac{f^{\prime}-f g^{\prime}}{g^{2}} \\
& f=e^{g(x)} \quad g=x^{2}+3 \\
& f^{\prime}=e^{g(x)} \cdot g^{\prime}(x) \quad g^{\prime}=2 x \\
& f^{\prime}(x)=\frac{\left(x^{2}+3\right)\left(e^{g(x)} \cdot g^{\prime}(x)\right)-e^{g(x)}(2 x)}{\left(x^{2}+3\right)^{2}}
\end{aligned}
$$

3. Determine the derivative of $f(x)=e^{\cos ^{2}(x)}$.
(A) $e^{-2 \sin (x) \cos (x)}$
(B) $-2 e^{\cos ^{2}(x)} \sin (x)$
(C) $2 e^{\cos ^{2}(x)} \cos (x)$
(D) $-2 e^{\cos ^{2}(x)} \cos (x) \sin (x)$
$(E) e^{-2 \sin (x) \cos (x)} \sin (x)$

$$
\begin{aligned}
& f(x)=e^{\cos ^{2}(x)} \\
& f^{\prime}(x)=e^{\cos ^{2}(x)}\left(\frac{d}{d x}\left(\cos ^{2}(x)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \quad f^{\prime}(x)=e^{\cos ^{2}(x)}(-2 \cos (x) \sin (x)) \\
& \frac{d}{d x} \cos ^{2}(x) \\
& =\frac{d}{d x}(\cos (x))^{2} \\
& =2(\cos (x)) \cdot(-\sin (x)) \\
& =-2 e^{\cos ^{2}(x)} \cos (x) \sin (x) \sin (x)
\end{aligned}
$$

* Answer key was incorrect *

4. If $f(x)=\cot ^{-1}(x)(f(x)=\operatorname{arccot}(x))$, then find an expression for $f^{\prime \prime}(x)$.
(A) $f^{\prime \prime}(x)=\frac{2 x}{\left(1+x^{2}\right)^{2}}$
(C) $f^{\prime \prime}(x)=\frac{1-2 x+x^{2}}{\left(1+x^{2}\right)^{2}}$

$$
f(x)=\cot ^{-1}(x)
$$

$$
f^{\prime}(x)=\frac{-1}{1+x^{2}} \quad \text { (Memorize) }
$$

Quotient
Rule $\frac{g^{\prime}-f g^{\prime}}{g^{2}}$ for $f^{\prime \prime}(x)$

$$
\begin{array}{rlrl}
f & =-1 & g=1+x^{2} \\
f^{\prime} & =0 & g^{\prime}=2 x \\
f^{\prime \prime}(x) & =\frac{\left(1+x^{2}\right)(0)-(-1)(2 x)}{\left(1+x^{2}\right)^{2}}=\frac{2 x}{\left(1+x^{2}\right)^{2}}
\end{array}
$$

OR Rewrite as $-1\left(1+x^{2}\right)^{-1}$ and use Chain Rule

$$
\frac{d}{d x}(x y)=\frac{d}{d x}(\sin (y))
$$

Prod. Rule $g f^{\prime}+f g^{\prime}$

$$
\begin{array}{ll}
f=x & g=y \\
f^{\prime}=1 & g^{\prime}=1 \frac{d y}{d x}
\end{array}
$$

$$
\begin{gathered}
y(1)+(x)\left(1 \frac{d y}{d x}\right)=\cos (y)\left(\frac{d y}{d x}\right) \\
y+x \frac{d y}{d x}=\cos (y) \frac{d y}{d x} \\
x \frac{d y}{d x}-\cos (y) \frac{d y}{d x}=-y \\
\frac{d y}{d x}(x-\cos (y))=-y \\
\frac{d y}{d x}=\frac{-y}{x-\cos (y)}
\end{gathered}
$$

6. Which of the following is equal to the derivative of $g(x)=3 x^{2}+\sqrt[3]{x^{2}}+4$
(A) $g^{\prime}(x)=6 x+\frac{1}{3 \sqrt[3]{x}}$
(B) $g^{\prime}(x)=3 x+\frac{1}{3 \sqrt[3]{x}}$
(C) $g^{\prime}(x)=3 x+\frac{2}{3 \sqrt[3]{x}}+4$
(D) $g^{\prime}(x)=6 x+\frac{2}{3 \sqrt[3]{x}}$

$$
\begin{aligned}
& g(x)=3 x^{2}+x^{2 / 3}+4 \\
& g^{\prime}(x)=6 x+\frac{2}{3} x^{-1 / 3} \\
& g^{\prime}(x)=6 x+\frac{2}{3 \sqrt[3]{x}}
\end{aligned}
$$

$$
\frac{2}{3}-\frac{3}{3}=\frac{-1}{3}
$$

Need chain rule
7. Let $f(x)=(1+\sqrt{x})^{\frac{1}{3}}$. What is $f^{\prime}(x)$?

$$
f(x)=(1+\sqrt{x})^{1 / 3}
$$

$$
f(x)=\left(1+x^{1 / 2}\right)^{1 / 3}
$$

$$
\begin{aligned}
& f(x)=\left(1+x^{1 / 2}\right)^{1 / 3} \\
& f^{\prime}(x)=\frac{1}{3}\left(1+x^{1 / 2}\right)^{-\frac{2}{3}}\left(\frac{1}{2} x^{-1 / 2}\right)
\end{aligned}
$$

$$
\frac{1}{3}-\frac{3}{3}=\frac{-2}{3}
$$

8. What is the slope of the line tangent to the graph of $y=2^{x}-3^{x}+4^{x}$ when $x=0$?
(A) $\ln \left(\frac{3}{2}\right)$
(B) $\ln \left(\frac{8}{3}\right)$
(C) 1
(D) $\ln (24)$

$$
\begin{aligned}
& \ln \left(y=\ln \left(2^{x}\right)\right. \\
& \ln (y)=x \ln (2)
\end{aligned}
$$

\rightarrow derivative:

$$
\begin{aligned}
\frac{1}{y} \frac{d y}{d x} & =\ln (2) \\
\frac{d y}{d x} & =\ln (2) \cdot y \\
& =\ln (2) \cdot 2^{x}
\end{aligned}
$$

$$
\frac{d y}{d x}=\ln (2) 2^{x}-\ln (3) 3^{x}+\ln (4) 4^{x}
$$

when $x=0$

$$
\begin{aligned}
& \text { when } x=0 \\
& \frac{d y}{d x}=\ln (2) 2^{7}-\ln (3) 33^{5^{1}}+\ln (4) 4^{\frac{1}{3}} \\
& \frac{d y}{d x}=\ln (2)-\ln (3)+\ln (4) \\
& \frac{d y}{d x}=\ln \left(\frac{2}{3}\right)+\ln (4) \\
& \frac{d y}{d x}=\ln \left(\frac{2}{3} \cdot 4\right)=\ln \left(\frac{8}{3}\right)
\end{aligned}
$$

9. What is an equation for the line tangent to the function $f(x)=6 x \sin (x)+\pi$ at $x=\frac{\pi}{2}$?
tangent line $\xlongequal[T]{ }$ point

$$
\begin{aligned}
& f\left(\frac{\pi}{2}\right)=6\left(\frac{\pi}{2}\right) \sin \left(\frac{\pi}{2}\right)+\pi \quad\left(\frac{\pi}{2}, 4 \pi\right) \\
& f\left(\frac{\pi}{2}\right)=3 \pi(1)+\pi=4 \pi
\end{aligned}
$$

Slope: find $f^{\prime}(x)$

$$
\begin{aligned}
& f^{\prime}(x)=6 \sin (x)+6 x \cos (x) \quad m=6 \\
& f^{\prime}\left(\frac{\pi}{2}\right)=6(1)+6\left(\frac{\pi}{2}\right)(0)=6
\end{aligned}
$$

Use print slope form:

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4 \pi=6\left(x-\frac{\pi}{2}\right) \\
& y=6 x-3 \pi+4 \pi \\
& y=6 x+\pi
\end{aligned}
$$

10. Let $f(x)$ and $g(x)$ be differentiable functions such that $g(3)=1$ Which of the following is equal to $h^{\prime}(3)$ where $h(x)=f(x) g(x)+\frac{f(x)}{g(x)}$?
(A) 2
(B) $2 f(3)$
(C) $2 f^{\prime}(3)$
(D) $2 g^{\prime}(3)$
(E) None of these

$$
\begin{aligned}
& h(x)=f(x) g(x)+\frac{f(x)}{g(x)} \\
& h^{\prime}(x)=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)+\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{(g(x))^{2}} \\
& h^{\prime}(3)=f(3) g^{\prime}(3)+f^{\prime}(3) g(3)+\frac{g(3) f^{\prime}(3)-f(3) g^{\prime}(3)}{(g(3))^{2}} \\
& h^{\prime}(3)=f(3) g(3)+f^{\prime}(3)+f^{\prime}(3)-\frac{f(3) g^{\prime}(3)}{} \\
& h^{\prime}(3)=2 f^{\prime}(3)
\end{aligned}
$$

11. The mass of a length of wire is $m(x)=x(1+2 \sqrt{x})$ kilograms, where x is the length of the wire measured in meters. The linear density of the wire is the rate of change of the mass m with respect to x. Find the linear density of the wire (expressed in kg / m) when $x=4 \mathrm{~m}$.
(A) 1

$$
\begin{aligned}
& \text { Min. density }=\frac{d m}{d x} \quad \text { and } x=4 \\
& m(x)=x(1+2 \sqrt{x})=x\left(1+2 x^{1 / 2}\right) \\
&=x+2 x^{3 / 2} \\
& m^{\prime}(x)=1+2\left(\frac{3}{2}\right) x^{1 / 2} \\
& m^{\prime}(x)=1+3 x^{1 / 2}=1+3 \sqrt{x} \\
& m^{\prime}(4)=1+3 \sqrt{4} \\
&=1+3(2)=7
\end{aligned}
$$

12. Let $h(x)=f(g(x))$. Based on the following table of values for $f(x), f^{\prime}(x), g(x)$, and $g^{\prime}(x)$, find $h^{\prime}(2)$.

x	0	1	2	3
$f(x)$	0	2	1	1
$f^{\prime}(x)$	2	3	1	2
$g(x)$	2	1	3	3
$g^{\prime}(x)$	0	1	3	2

(A) 0
(B) 1
(C) 2
(D) 3
(E) 6

$$
\begin{aligned}
h(x) & =f(g(x)) \\
h^{\prime}(x) & =f^{\prime}(g(x)) \cdot g^{\prime}(x) \\
h^{\prime}(2) & =f^{\prime}(g(2)) \cdot g^{\prime}(2) \\
& =f^{\prime}(3) \cdot 3 \\
& =2 \cdot 3=6
\end{aligned}
$$

| (A) $\frac{1}{\sin ^{2}(x)}$ | (B) $-2 \sec ^{3}(x)$ | (C) $2 \sec (x)$ | (D) $2 \sec ^{2}(x) \tan (x)$ |
| :--- | :--- | :--- | :--- | (E) None of these

$$
\begin{aligned}
f(x) & =\sec ^{2}(x) \\
& =\frac{1}{(\cos (x))^{2}}=(\cos (x))^{-2} \\
f^{\prime}(x) & =-2(\cos (x))^{-3} \cdot(-\sin (x)) \\
f^{\prime}(x) & =\frac{2 \sin (x)}{(\cos (x))^{3}} \\
& =2 \frac{\sin (x)}{\cos (x)} \cdot \frac{1}{(\cos (x))^{2}} \\
& =2 \tan (x) \sec ^{2}(x)
\end{aligned}
$$

$$
x(x-1)=y^{3}
$$

$\frac{d}{d x}\left(x^{2}-x\right)=\frac{d}{d x} y^{3}$) (Distribute to avoid Prod. Rule)

$$
\begin{aligned}
2 x-1 & =3 y^{2} \frac{d y}{d x} \\
\frac{d y}{d x} & =\frac{2 x-1}{3 y^{2}}
\end{aligned}
$$

undefined if $3 y^{2}=0 \rightarrow y=0$
Plug $y=0$ into original

$$
\begin{aligned}
& x(x-1)=0^{3} \\
& x(x-1)=0 \\
& x=0, x=1
\end{aligned}
$$

\qquad

Part III Instructions: 6 multiple choice questions
2. Suppose that $A=B+C$ and A, B, and C are functions of t. If $\frac{d B}{d t}=3$ and $\frac{d C}{d t}=-4$ what is $\frac{d A}{d t}$?
(A) 0
(B) 1
(C) 7
(D) -1
(E) None of the above

$$
\frac{d}{d t}(A)=\frac{d}{d t}(B+C)
$$

$$
1 \frac{d A}{d t}=1 \frac{d B}{d t}+1 \frac{d C}{d t}
$$

$$
\frac{d A}{d t}=3-4=-1
$$

7. If $f(x)=\ln \left(\sqrt{e^{\sin (x)}}\right)$, then $f^{\prime}\left(\frac{\pi}{3}\right)$ equals:
(A) $\frac{1}{4}$
(B) $\frac{\sqrt{2}}{\ln \left(\frac{\pi}{3}\right)}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{1}{2} \ln \left(e^{\pi}\right)$
(E) $\frac{\sqrt{2}}{4}$

$$
\begin{aligned}
f(x) & =\frac{1}{\sqrt{e^{\sin (x)}}} \cdot \frac{d}{d x}\left(\sqrt{e^{\sin (x)}}\right) \\
\frac{d}{d x} & =\left(e^{\sin (x)}\right)^{1 / 2} \\
& =\frac{1}{2}\left(e^{\sin (x)}\right)^{-1 / 2} \cdot e^{\sin (x)} \cdot \cos (x) \\
f(x) & =\frac{1}{2 e^{\sin (x)}} \cdot e^{\sin (x)} \cdot \cos (x) \\
& =\frac{1}{2} \cos (x) \\
f^{\prime}\left(\frac{\pi}{3}\right) & =\frac{1}{2} \cos \left(\frac{\pi}{3}\right)=\frac{1}{2}\left(\frac{1}{2}\right)=\frac{1}{4}
\end{aligned}
$$

13. If $f(x)=5 \ln \left(3 x^{3}+18 x\right)$, at how many different points on the graph does there exist a horizontal tangent line? when $f^{\prime}(x)=0$
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4

$$
\left.\begin{array}{rl}
f(x)= & 5 \ln \left(3 x^{3}+18 x\right) \quad \\
f^{\prime}(x)= & 5\left(\frac{1}{3 x^{3}+18 x}\right)\left(9 x^{2}+18\right) \\
\text { deriv in of inside }
\end{array}\right]\left(\frac{9 x^{2}+18}{3 x^{3}+18 x}\right) \quad \begin{gathered}
f^{\prime}(x)=5\left(\frac{9\left(x^{2}+2\right)}{3 x\left(x^{2}+6\right)}\right) \\
f^{\prime}(x)=5(x)=\frac{45\left(x^{2}+2\right)}{3 x\left(x^{2}+6\right)}=0 \\
45\left(x^{2}+2\right)=0 \\
x^{2}+2=0 \\
x^{2}=-2
\end{gathered}
$$

14. The volume of a sphere is given by $V=\frac{4}{3} \pi r^{3}$ with radius r. Suppose the sphere expands as time passes. Which of the following gives $\frac{d V}{d t}$ in terms of $\frac{d r}{d t}$?
(A) $\frac{d V}{d t}=\frac{4}{3} \pi r^{3} \frac{d r}{d t}$
(B) $\frac{d V}{d t}=4 \pi r^{2}$
(C) $\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}$
(D) $\frac{d V}{d t}=4 \pi\left(\frac{d r}{d t}\right)^{2}$
(E) None of the above

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
\frac{d V}{d t} & =3\left(\frac{4}{3}\right) \pi r^{2} \frac{d r}{d t} \\
& =4 \pi r^{2} \frac{d r}{d t}
\end{aligned}
$$

Calculus I: MAC2311

Name: \qquad

Exam 2

Part II Instructions: 5 free response questions

For Instructor Use Only:

FR 1	
FR 2	
FR 3	
FR 4	
FR 5	
Total Points	

1. Complete both parts of the problem concerning the function $f(x)=2 x-4 \cos (x)$.
(a) How many tangent lines to the function $f(x)$ are horizontal in the interval $[0,2 \pi]$?

$$
\begin{array}{cc}
f^{\prime}(x)=2+4 \sin (x)=0 & \text { so then } \\
2+4 \sin (x)=0 & \text { horizon } \\
4 \sin (x)=-2 & \\
\sin (x)=\frac{-2}{4} & \\
\sin (x)=\frac{-1}{2} & \rightarrow x=\frac{7 \pi}{6}, \frac{11 \pi}{6}
\end{array}
$$

(b) Write down the equations of these horizontal tangent lines.

Hoviz. tangent for $x=\frac{7 \pi}{6}$

$$
\begin{aligned}
f\left(\frac{7 \pi}{6}\right) & =2\left(\frac{7 \pi}{6}\right)-4 \cos \left(\frac{7 \pi}{6}\right) \\
& =\frac{7 \pi}{3}-4\left(\frac{-\sqrt{3}}{2}\right) \\
& =\frac{7 \pi}{3}+2 \sqrt{3} \\
y & =\frac{7 \pi}{3}+2 \sqrt{3}
\end{aligned}
$$

Horiz tang. for $x=\frac{11 \pi}{6}$

$$
\begin{aligned}
f\left(\frac{11 \pi}{6}\right) & =2\left(\frac{11 \pi}{6}\right)-4 \cos \left(\frac{11 \pi}{6}\right) \\
& =\frac{11 \pi}{3}-4\left(\frac{\sqrt{3}}{2}\right) \\
& =\frac{11 \pi}{3}-2 \sqrt{3} \\
y & =\frac{11 \pi}{3}-2 \sqrt{3}
\end{aligned}
$$

2. Find an equation for the line tangent to the graph $y=\frac{\left(x^{2}+3 x+1\right) e^{x}}{\cos (x)}$ at $x=0$.
tangent line

Point $\frac{\left(0^{2}+3(0)+1\right) e^{0}}{\cos (0)}=\frac{1(1)}{1}=1$
$(0,1)$
Slope Find y^{\prime} (need Quotient Rile: $\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$

$$
\begin{array}{cl}
f=\left(x^{2}+3 x+1\right) e^{x} & g=\cos (x) \\
f^{\prime}=\left(x^{2}+3 x+1\right) e^{x}+(2 x+3) e^{x} \quad g^{\prime}=-\sin (x) \\
y^{\prime}=\frac{\cos (x)\left[\left(x^{2}+3 x+1\right)\left(e^{x}\right)+(2 x+3)\left(e^{x}\right)\right]-\left[\left(x^{2}+3 x+1\right) e^{x}-(-\sin (x)]\right.}{(\cos (x))^{2}}
\end{array}
$$

Ping in $x=0$

$$
\begin{aligned}
& y^{\prime}=\frac{\cos (0)\left[\left(0^{2}+3(0)+1\right)\left(e^{0}\right)+(2 \cos +3)\left(e^{0}\right)\right]-\left[\left(0^{2}+3(0)+1\right) e^{0}(-\sin (0))\right]}{(\cos (0))^{2}} \\
& y^{\prime}=\frac{(1)[(1)(1)+(0+3)(1)]-((1)(1)(0))}{1^{2}} \\
& y^{\prime}=\frac{(1+3)}{1}=\frac{4}{1}=4
\end{aligned}
$$

use point-slope form

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =4(x-0) \\
y-1 & =4 x \\
y & =4 x+1
\end{aligned}
$$

$$
\left(x_{1}, y_{1}\right)=(0,1)
$$

$$
m=4
$$

3. Find all points on the curve $x^{2}-x y+y^{2}=3$ at which there is a vertical tangent line. Write your answer (s) in the form (x, y) for each coordinate pair.
slope undefined

$$
\begin{aligned}
& \left.\frac{d}{d x}\left(x^{2}-x y+y^{2}\right)=\frac{d(3)}{d x}\right) \\
& 2 x-\left(x \frac{d y}{d x}+y\right)+2 y \frac{d y}{d x}=0
\end{aligned}
$$

Prod. Rule

$$
\begin{aligned}
& 2 x-x \frac{d y}{d x}-y+2 y \frac{d y}{d x}=0 \\
& 2 y \frac{d y}{d x}-x \frac{d y}{d x}=y-2 x \\
& \frac{d y}{d x}(2 y-x)=y-2 x \\
& \frac{d y}{d x}=\frac{y-2 x}{2 y-x}
\end{aligned}
$$

undefined when $2 y-x=0 \rightarrow 2 y=x$

$$
\begin{aligned}
& (2 y)^{2}-(2 y) y+y^{2}=3 \\
& 4 y^{2}-2 y^{2}+y^{2}=3 \\
& 3 y^{2}=3 \\
& y^{2}=1 \rightarrow y= \pm 1
\end{aligned}
$$

$$
2 y=x
$$

when $y=1 \rightarrow x=2(1)=2$
when $y=-1 \rightarrow x=2(-1)=-2$
$(2,1)$ and $(-2,-1)$
4. Evaluate the following:

- $\frac{d}{d x}\left(\sin ^{-1}(x)\right),\left(\frac{d}{d x}(\arcsin (x))\right)=\left\{\frac{1}{\sqrt{1-\boldsymbol{X}^{2}}}\right\}$

- $\frac{d}{d x}\left(\tan ^{-1}(3 x)\right),\left(\frac{d}{d x}(\arctan (3 x))\right)$

$$
=\frac{1}{1+(3 x)^{2}} \cdot(3)=\frac{3}{1+9 x^{2}}
$$

$$
\left((\arccos (\mathrm{x}))^{\prime}=\frac{-1}{\sqrt{1-\mathrm{x}^{2}}} \cdot \frac{d}{d x}\left(\cos ^{-1}(2 x+1)\right),\left(\frac{d}{d x}(\arccos (2 x+1))\right)\right.
$$

5. A stone is thrown upward from a 60 meter tall cliff so that its height above the ground is $h(t)=$ $60+4 t-t^{2}$ for $t \geq 0$.
(a) When does the stone reach its highest point?

$$
\begin{array}{r}
v(t)=h^{\prime}(t)=4-2 t=0 \\
4=2 t \\
t=2
\end{array}
$$

(b) When does the stone hit the ground?

$$
\begin{aligned}
& h(t)=0 \\
& 60+4 t-t^{2}=0 \\
& t^{2}-4 t-60=0 \\
& (t-10)(t+6)=0
\end{aligned}
$$

$$
t=10
$$

(c) What is the total vertical distance traveled by the stone from when it is thrown to when it hits the ground?

$$
\mid \text { highest pt -start }|+| \text { ground -nighest } p+1
$$

$$
|h(2)-h(0)|+|h(10)-h(2)|
$$

$$
|64-60|+|0-64|
$$

$$
4+64=68 \mathrm{~m}
$$

Calculus I: MAC2311

Name: \qquad

Part IV Instructions: 2 free response questions

For Instructor Use Only:

FR 1	
FR 2	
Total Points	

$$
\begin{gathered}
\text { 1. (7 p ps) Use logarithmic differentiation to find the derivative of } f(x)=\sqrt{\frac{x^{2} \cos ^{3}(x)}{e^{x} \sqrt{x}}} \\
\ln (y)=\ln \left(\sqrt{\frac{x^{2} \cos ^{3}(x)}{e^{x} \sqrt{x}}}\right) \\
\ln (y)=\ln \left(\frac{x^{2} \cos ^{3}(x)}{e^{x} \sqrt{x}}\right)^{1 / 2} \\
\ln (y)=\frac{1}{2} \ln \left(\frac{x^{2} \cos ^{3}(x)}{e^{x} \sqrt{x}}\right) \\
\ln (y)=\frac{1}{2} \ln \left(x^{2} \cos ^{3}(x)\right)-\ln \left(e^{x} \sqrt{x}\right) \\
\ln (y)=\frac{1}{2}\left[\ln \left(x^{2}\right)+\ln (\cos 3(x))-\left(\ln \left(e^{x}\right)+\ln (\sqrt{x})\right)\right] \\
\frac{d}{d x} \ln (y)=\frac{d 1}{d x}\left[2 \ln (x)+3 \ln (\cos (x))-x \ln (e)-\frac{1}{2} \ln (x)\right] \\
\frac{1}{y} \frac{d y}{d x}=\frac{1}{2}\left[\frac{2}{x}+\frac{-3 \sin (x)}{\cos (x)}-1-\frac{1}{2 x}\right] \\
\frac{d y}{d x}=\left(\frac{1}{x}-\frac{3}{2} \tan (x)-\frac{1}{2}-\frac{1}{4 x}\right) \cdot y \\
\frac{d y}{d x}=\left(\frac{1}{x}-\frac{3}{2} \tan (x)-\frac{1}{2}-\frac{1}{4 x}\right)\left(\sqrt{\frac{x^{2} \cos ^{3}(x)}{e^{x} \sqrt{x}}}\right)
\end{gathered}
$$

2. (7 pts) Suppose a 13 foot ladder rests against a wall. If the bottom of the ladder slides away from the wall at a rate of 3 feet per second, at what rate does the angle the ladder makes with the ground change when the top of the ladder is 5 feet from the ground?

So H
CAD
TO

$$
\begin{aligned}
& \cos \theta=\frac{y}{13} \quad \sin \theta=\frac{x}{13}=\frac{5}{13} \\
& -\sin \theta \frac{d \theta}{d t}=\frac{1}{13} \frac{d y}{d t} \\
& -\sin \theta \frac{d \theta}{d t}=\frac{1}{13}(3) \\
& -\left(\frac{5}{13}\right) \frac{d \theta}{d t}
\end{aligned}=\frac{3}{13} .
$$

We cart do:

$$
\begin{array}{ll}
\sin (\theta)=\frac{x}{13} & \text { we don't know } \frac{d x}{d t} \\
\cos \theta=\frac{1}{13} \frac{d x}{d t} & \text { or } \cos \theta=\frac{y}{13} \text { since we don know }
\end{array}
$$

