Exam 2 Key

Part I:	
Question	Answer
1	D
2	E
3	D
4	B
5	A
6	D
7	B
8	B
9	B
10	C
11	C
12	E
13	D
14	C

\qquad

Exam 2

Part II Instructions: 5 free response questions

For Instructor Use Only:

FR 1	
FR 2	
FR 3	
FR 4	
FR 5	
Total Points	

1. Complete both parts of the problem concerning the function $f(x)=2 x-4 \cos (x)$.
(a) How many tangent lines to the function $f(x)$ are horizontal in the interval $[0,2 \pi]$?

Solution

$f^{\prime}(x)=2+4 \sin x=0$, so $\sin x=-\frac{1}{2}$. This equation has two solutions on the interval $[0,2 \pi]$:
$x=\frac{7 \pi}{6}$ and $x=\frac{11 \pi}{6}$. That is, $f(x)$ has two horizontal tangent lines in the interval $[0,2 \pi]$.
(b) Write down the equations of these horizontal tangent lines.

Solution

$$
\begin{gathered}
f\left(\frac{7 \pi}{6}\right)=\frac{7 \pi}{3}-4 \cos \left(\frac{7 \pi}{6}\right)=\frac{7 \pi}{3}+2 \sqrt{3} \\
f\left(\frac{11 \pi}{6}\right)=\frac{11 \pi}{3}-4 \cos \left(\frac{11 \pi}{6}\right)=\frac{11 \pi}{3}-2 \sqrt{3}
\end{gathered}
$$

The equations of the horizontal lines are $y=\frac{7 \pi}{3}+2 \sqrt{3}$ and $y=\frac{11 \pi}{3}-2 \sqrt{3}$.
2. Find an equation for the line tangent to the graph $y=\frac{\left(x^{2}+3 x+1\right) e^{x}}{\cos (x)}$ at $x=0$.

Solution

$$
\begin{aligned}
y^{\prime} & =\frac{\cos x \cdot \frac{d}{d x}\left[\left(x^{2}+3 x+1\right) e^{x}\right]-\left(x^{2}+3 x+1\right) e^{x} \cdot \frac{d}{d x}[\cos x]}{(\cos x)^{2}} \\
& =\frac{\cos x \cdot\left[\left(x^{2}+3 x+1\right) \cdot \frac{d}{d x}\left[e^{x}\right]+e^{x} \cdot \frac{d}{d x}\left[x^{2}+3 x+1\right]\right]-\left(x^{2}+3 x+1\right) e^{x} \cdot-\sin x}{\cos ^{2} x} \\
& =\frac{\cos x \cdot\left[\left(x^{2}+3 x+1\right) e^{x}+e^{x}(2 x+3)\right]+\left(x^{2}+3 x+1\right) e^{x} \sin x}{\cos ^{2} x}
\end{aligned}
$$

Plugging in $x=0$,

$$
y^{\prime}(0)=\frac{1 \cdot[1 \cdot 1+1 \cdot 3]+1 \cdot 1 \cdot 0}{1^{2}}=4 .
$$

When $x=0, y(0)=1$. The equation of the tangent line is therefore $y=4 x+1$.
3. Find all points on the curve $x^{2}-x y+y^{2}=3$ at which there is a vertical tangent line. Write your answer(s) in the form (x, y) for each coordinate pair.

Solution

Differentiating both sides with respect to x,

$$
\begin{aligned}
\frac{d}{d x}\left[x^{2}-x y+y^{2}\right] & =\frac{d}{d x}[3] \\
2 x-x y^{\prime}-y+2 y y^{\prime} & =0 \\
(-x+2 y) y^{\prime} & =-2 x+y \\
y^{\prime} & =\frac{-2 x+y}{-x+2 y}
\end{aligned}
$$

Vertical tangent lines occur when $-x+2 y=0$, so $x=2 y$. Plugging into the curve,

$$
\begin{aligned}
(2 y)^{2}-2 y \cdot y+y^{2} & =3 \\
3 y^{2} & =3 \\
y & = \pm 1
\end{aligned}
$$

When $y=1, x=2$. When $y=-1, x=-2$. The points on the curve where there is a vertical tangent are $(2,1)$ and $(-2,-1)$.
4. Evaluate the following:

- $\frac{d}{d x}\left(\sin ^{-1}(x)\right),\left(\frac{d}{d x}(\arcsin (x))\right)$

Solution

$$
\frac{d}{d x}\left[\sin ^{-1}(x)\right]=\frac{1}{\sqrt{1-x^{2}}}
$$

- $\frac{d}{d x}\left(\csc ^{-1}\left(x^{2}\right)\right),\left(\frac{d}{d x}\left(\operatorname{arccsc}\left(x^{2}\right)\right)\right)$

Solution

$$
\frac{d}{d x}\left[\csc ^{-1}\left(x^{2}\right)\right]=\frac{-1}{x^{2} \sqrt{\left(x^{2}\right)^{2}-1}} \cdot \frac{d}{d x}\left[x^{2}\right]=\frac{-2 x}{x^{2} \sqrt{x^{4}-1}}=\frac{-2}{x \sqrt{x^{4}-1}}
$$

- $\frac{d}{d x}\left(\tan ^{-1}(3 x)\right),\left(\frac{d}{d x}(\arctan (3 x))\right)$

Solution

$$
\frac{d}{d x}\left[\tan ^{-1}(3 x)\right]=\frac{1}{1+(3 x)^{2}} \cdot \frac{d}{d x}[3 x]=\frac{3}{1+9 x^{2}}
$$

- $\frac{d}{d x}\left(\cos ^{-1}(2 x+1)\right),\left(\frac{d}{d x}(\arccos (2 x+1))\right)$

Solution

$$
\frac{d}{d x}\left[\cos ^{-1}(2 x+1)\right]=\frac{-1}{\sqrt{1-(2 x+1)^{2}}} \cdot \frac{d}{d x}[2 x+1]=\frac{-2}{\sqrt{1-(2 x+1)^{2}}}
$$

5. A stone is thrown upward from a 60 meter tall cliff so that its height above the ground is $h(t)=$ $60+4 t-t^{2}$ for $t \geq 0$.
(a) When does the stone reach its highest point?

Solution

$v(t)=h^{\prime}(t)=4-2 t=0$, so $t=2$. The stone reaches its highest point after 2 seconds.
(b) When does the stone hit the ground?

Solution

$$
\begin{aligned}
h(t) & =0 \\
60+4 t-t^{2} & =0 \\
t^{2}-4 t-60 & =0 \\
(t-10)(t+6) & =0 \\
t & =10
\end{aligned}
$$

The stone hits the ground after 10 seconds. Notice that $t=-6$ is not a solution because time starts when $t=0$
(c) What is the total vertical distance traveled by the stone from when it is thrown to when it hits the ground?

Solution

$$
|h(2)-h(0)|+|h(10)-h(2)|=|64-60|+|0-64|=4+64=68 \text { meters }
$$

Part III:

MC Key

1 B
2 D

3 A
7 A

13 A
14 C

Part IV Instructions: 2 free response questions

For Instructor Use Only:

FR 1	
FR 2	
Total Points	

$$
\begin{aligned}
& \text { opt for orcus old } 1 . \text { (7 pts) Use logarithmic differentiation to find the derivative of } f(x)=\sqrt{\frac{x^{2} \cos ^{3}(x)}{e^{x} \sqrt{x}}} \text {. } \\
& \ln (f(x))=\ln \left(\sqrt{\frac{x^{2} \cos ^{3}(x)}{e^{x} \sqrt{x}}}\right) \\
& \text { opt for singes log lows to } \\
& 1 \text { rewrite } \\
& \ln (f(x))=\frac{1}{2}\left(2 \ln x+3 \ln (\cos (x))-x-\frac{1}{2} \ln (x)\right) \\
& \ln (f(x))=\ln x+\frac{3}{2} \ln (\cos (x))-\frac{x}{2}-\frac{1}{4} \ln (x) \frac{1}{2} \text { pt br mean } \\
& \text { int for }
\end{aligned}
$$

$$
\begin{aligned}
& \text { corrects } \\
& \text { curpereatiatee } \\
& -\frac{1}{2}-\frac{1 \text { differentiated }}{4 \times \text { term on }} \\
& f^{\prime}(x)=f(x)\left(\frac{1}{x}-\frac{3 \sin (x)}{2 \cos (x)}-\frac{1}{2}-\frac{1}{4 x}\right) \begin{array}{c}
\text { oise } \\
\text { aptstatal }
\end{array} \\
& \xrightarrow{\substack{\text { Int mautplying } \\
\text { bis } \\
(x)}}=\sqrt{\frac{x^{2} \cos ^{3}(x)}{e^{x} \sqrt{x}}}\left(\frac{1}{x}-\frac{3}{2} \tan (x)-\frac{1}{2}-\frac{1}{\alpha x}\right)
\end{aligned}
$$

I pf for 2. (7 pts) Suppose a 13 foot ladder rests against a wall. If the bottom of the ladder slides away from oubst'tuln the wall at a rate of 3 feet per second, at what rate does the angle the ladder makes with the ground the fustian ban in

$$
\frac{d y}{d t}=3^{\mathrm{ft}} / \mathrm{sec}
$$

want $\frac{d o}{d t}$ when $x=\delta f_{t}$

$\frac{1}{2}$ pt for each
2 pts total for correct derivative

