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1. Let f(x) = o Use the limit definition of the derivative to find f'(z). (NOTE: NO credit
x

will be given if another method is used.)
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2. Find all vertical and horizontal asymptotes of the graph y =

202 —4x — 6

x2—1
Solution
Vertical Asymptote:
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Horizontal asymptote is y = 2
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3. Evaluate lim 2% cos <3)
T

Solution

—1

IN
IN

Cos (3> 1
T
x4 cos <3>
T

3
Because lim z* = 0 and lim —2* = 0, Iin%) z* cos <) = 0 by the Squeeze Theorem.
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4. Find an interval where the equation 23 4+ 2z + 1 = 0 has at least one solution and explain why it
has such a solution.

Solution Consider the interval [—1,0]. Let f(z) = 2® + 2z + 1. Notice that f(z) is a polynomial
and is therefore continuous on its domain of all real numbers. f(z) is therefore continuous on [—1,0].
f(=1) = =2 and f(0) = 1. Because f(—1) < 0 < f(0), there exists a number ¢ in (—1,0) such that
f(c) = 0 by the Intermediate Value Theorem. That is, 2% + 22 + 1 = 0 has a solution in the interval
(—1,0).



5. Consider the function

x+2, x<0
z—1
fla)y=S gz 0=e<2,
1 >2
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Give all the values of  at which each of the following types of discontinuities occur. If no such dis-
continuity occurs, write NA in the correct space.

Removable Discontinuity:

Jump Discontinuity:

Infinite Discontinuity:

Solution lim f(z) = 2 and lim f(z) = 1. Because the limits are not equal, there is a jump
z—0~ z—0t
discontinuity at x = 0. lim f(z) = - and lim f(z) = —1. Because the limits are not equal, there is
T2~ 3 z—2+1
a jump discontinuity at z = 2.
z—1 1
When 0 <z < 2, f(x) = = ,x # 1. Because 1 is in |0, 2), there is a removable
= /() (z—1)(x+1) z+1 7 0,2) v
discontinuity at = 1. Because —1 is not in [0, 2), there is not an infinite discontinuity at z = —1.

1
When z > 2, f(x) = —_3 Because 3 is in [2,00), there is an infinite discontinuity at « = 3.
Tz —





