Calculus I: MAC2311
Exam 1

Part I Instructions: 14 multiple choice questions

Exam 1	
MC Key	
1	C
2	B
3	C
4	A
5	A
6	A
7	C
8	B
9	B
10	D
11	B
12	D
13	D
14	C

\qquad

Exam 1

Part II Instructions: 5 free response questions

For Instructor Use Only:

FR 1	
FR 2	
FR 3	
FR 4	
FR 5	
Total Points	

1. Let $f(x)=\frac{2}{x+5}$. Use the limit definition of the derivative to find $f^{\prime}(x)$. (NOTE: NO credit will be given if another method is used.)

Solution

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2}{x+h+5}-\frac{2}{x+5}}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{2}{x+h+5} \cdot \frac{x+5}{x+5}-\frac{2}{x+5} \cdot \frac{x+h+5}{x+h+5}\right) \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x+10-2 x-2 h-10}{(x+h+5)(x+5)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2 h}{(x+h+5)(x+5)} \cdot \frac{1}{h} \\
& =\lim _{h \rightarrow 0} \frac{-2}{(x+h+5)(x+5)} \\
& =\frac{-2}{(x+5)^{2}}
\end{aligned}
$$

2. Find all vertical and horizontal asymptotes of the graph $y=\frac{2 x^{2}-4 x-6}{x^{2}-1}$.

Solution

Vertical Asymptote:

$$
y=\frac{2\left(x^{2}-2 x-3\right)}{x^{2}-1}=\frac{2(x-3)(x+1)}{(x-1)(x+1)}=\frac{2(x-3)}{x-1}, x \neq-1
$$

Vertical asymptote is $x=1$
Horizontal Asymptote:

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}-4 x-6}{x^{2}-1}=\lim _{x \rightarrow \infty} \frac{2 x^{2}-4 x-6}{x^{2}-1} \cdot \frac{\frac{1}{x^{2}}}{\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{2-\frac{4}{x}-\frac{6}{x^{2}}}{1-\frac{1}{x^{2}}}=\frac{2-0-0}{1-0}=2
$$

Horizontal asymptote is $y=2$
3. Evaluate $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{3}{x}\right)$.

Solution

$$
\begin{aligned}
-1 & \leq \cos \left(\frac{3}{x}\right) \leq 1 \\
-x^{4} & \leq x^{4} \cos \left(\frac{3}{x}\right) \leq x^{4}
\end{aligned}
$$

Because $\lim _{x \rightarrow 0} x^{4}=0$ and $\lim _{x \rightarrow 0}-x^{4}=0, \lim _{x \rightarrow 0} x^{4} \cos \left(\frac{3}{x}\right)=0$ by the Squeeze Theorem.
4. Find an interval where the equation $x^{3}+2 x+1=0$ has at least one solution and explain why it has such a solution.

Solution Consider the interval $[-1,0]$. Let $f(x)=x^{3}+2 x+1$. Notice that $f(x)$ is a polynomial and is therefore continuous on its domain of all real numbers. $f(x)$ is therefore continuous on $[-1,0]$. $f(-1)=-2$ and $f(0)=1$. Because $f(-1)<0<f(0)$, there exists a number c in $(-1,0)$ such that $f(c)=0$ by the Intermediate Value Theorem. That is, $x^{3}+2 x+1=0$ has a solution in the interval $(-1,0)$.
5. Consider the function

$$
f(x)= \begin{cases}x+2, & x<0 \\ \frac{x-1}{x^{2}-1}, & 0 \leq x<2 \\ \frac{1}{x-3}, & x \geq 2\end{cases}
$$

Give all the values of x at which each of the following types of discontinuities occur. If no such discontinuity occurs, write NA in the correct space.

Removable Discontinuity:

[^0]
Infinite Discontinuity:

Solution $\lim _{x \rightarrow 0^{-}} f(x)=2$ and $\lim _{x \rightarrow 0^{+}} f(x)=1$. Because the limits are not equal, there is a jump discontinuity at $x=0$. $\lim _{x \rightarrow 2^{-}} f(x)=\frac{1}{3}$ and $\lim _{x \rightarrow 2^{+}} f(x)=-1$. Because the limits are not equal, there is a jump discontinuity at $x=2$.
When $0 \leq x<2, f(x)=\frac{x-1}{(x-1)(x+1)}=\frac{1}{x+1}, x \neq 1$. Because 1 is in $[0,2)$, there is a removable discontinuity at $x=1$. Because -1 is not in $[0,2)$, there is not an infinite discontinuity at $x=-1$.
When $x \geq 2, f(x)=\frac{1}{x-3}$. Because 3 is in $[2, \infty)$, there is an infinite discontinuity at $x=3$.

[^0]: Jump Discontinuity:

