## Calculus I: MAC2311

Name: $\qquad$

## Exam 1

Part I Instructions: 14 multiple choice questions

1. How many of the following functions are continuous on the interval $(-1, \infty)$ ?
(i) $f(x)=x^{2}+x+2$
(ii) $g(x)=\ln (x)$
(iii) $h(x)=\sqrt{x-2}$
(iv) $k(x)=3^{x}$
(A) 0
(B) 1
(C) 2
(D) 3
(E) 4
2. The displacement (in meters) of a particle moving in a straight line is given by $s(t)=t^{2}+8 t+18$, where $t$ is measured in seconds. What is the average velocity of the particle over the time interval $[2,4]$ ?
(A) $12 \mathrm{~m} / \mathrm{sec}$
(B) $14 \mathrm{~m} / \mathrm{sec}$
(C) $16 \mathrm{~m} / \mathrm{sec}$
(D) $28 \mathrm{~m} / \mathrm{sec}$
3. Suppose $3 x \leq f(x) \leq 9-\frac{3}{4} x^{2}$. What is $\lim _{x \rightarrow 2^{-}} f(x)$ ?
(A) 0
(B) 3
(C) 6
(D) 9
$(E)$ Does not exist
4. Let $f(x)=\frac{1}{(x+3)^{2}}$. Which one of the following statements concerning $f(x)$ is correct?
(A) $\lim _{x \rightarrow-3^{-}} f(x)=\infty$ and $x=-3$ is a vertical asymptote of $y=f(x)$
(B) $\lim _{x \rightarrow-3^{-}} f(x)=-\infty$ and $x=-3$ is a vertical asymptote of $y=f(x)$
(C) $\lim _{x \rightarrow 3^{-}} f(x)=\infty$ and $y=0$ is a vertical asymptote of $y=f(x)$
(D) $\lim _{x \rightarrow 3^{-}} f(x)=-\infty$ and $y=0$ is a vertical asymptote of $y=f(x)$
$(E)$ None of these
5. The function $f(x)=x^{2}+3 x-3$ is guaranteed to have a root in the interval $[-2,2]$ by the Intermediate Value Theorem.
(A) True
(B) False
6. Evaluate $\lim _{x \rightarrow 1} \frac{\sqrt{3 x+6}-3}{x-1}$.
(A) $\frac{1}{2}$
(B) $\frac{1}{6}$
(C) 0
(D) $\frac{1}{3}$
$(E)$ Does not exist
7. Let $f(x)=\frac{x+2}{x^{2}-4}$. Which one of the following statements is correct?
(A) $\lim _{x \rightarrow-2^{+}} f(x)=\infty$
(B) $x=-2$ is a vertical asymptote of $f(x)$
(C) $\lim _{x \rightarrow 2^{-}} f(x)=-\infty$
(D) $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)$
$(E)$ None of these
8. Which of the following statements is necessarily true?
(A) If $f(x)$ and $g(x)$ are continuous, then $f(x)+g(x)$ is discontinuous
(B) If $f(x)$ and $g(x)$ are continuous, then $f(x) g(x)$ is continuous
(C) If $f(x)$ is discontinuous and $g(x)$ is continuous, then $f(x)+g(x)$ is continuous
(D) If $f(x)$ is discontinuous, then $c f(x)$ is continuous where $c$ is any real number
9. Let

$$
f(x)= \begin{cases}\frac{x^{2}+3 x+2}{x^{2}-1}, & x \neq 1 \\ 3, & x=1\end{cases}
$$

Which one of the following statements concerning $f(x)$ is correct?
(A) $f(-1)=-\frac{1}{2}$ and $\lim _{x \rightarrow 1} f(x)$ does not exist
(B) $f(-1)$ is undefined and $\lim _{x \rightarrow 1} f(x)$ does not exist
(C) $f(-1)$ is undefined and $\lim _{x \rightarrow 1} f(x)=3$
(D) $f(-1)=-\frac{1}{2}$ and $\lim _{x \rightarrow 1} f(x)=3$
$(E)$ None of these
10. For which value of $k$ is the following function continuous for all real numbers?

$$
f(x)= \begin{cases}k 2^{x}, & x<2 \\ x^{2}+4 k x, & x \geq 2\end{cases}
$$

(A) 0
(B) 2
(C) 1
(D) -1
(E) No such value exists
11. Let $f(x)=\sqrt{x-3}$. Which of the following is equal to $f^{\prime}(4)$ ?
(A) $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-\sqrt{h}}{h}$
(B) $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}$
(C) $\lim _{h \rightarrow 4} \frac{\sqrt{1+h}-\sqrt{h}}{h}$
(D) $\lim _{h \rightarrow 4} \frac{\sqrt{1+h}-1}{h}$

The following graph is a graph of the function $f(x)$ and it will be used for Problems 12-13.

12. Using the graph above, at how many points is $f(x)$ not differentiable?
(A) 3
(B) 4
(C) 5
(D) 6
(E) 7
13. Using the graph above, what is/are the horizontal asymptote(s) of $y=f(x)$ ?
(A) No horizontal asymptotes
(B) $y=1$ only
$(C) y=-3$ only
(D) $y=-3$ and $y=1$
14. Evaluate $\lim _{t \rightarrow 1} \frac{10 t^{2}-3 t+6}{-2 t^{4}+7 t^{3}+1}$.
(A) -5
(B) $-\infty$
(C) $\frac{13}{6}$
(D) 6
$(E)$ Does not exist

Calculus I: MAC2311 $\qquad$

## Exam 1

Part II Instructions: 5 free response questions

For Instructor Use Only:

| FR 1 |  |
| :---: | :--- |
| FR 2 |  |
| FR 3 |  |
| FR 4 |  |
| FR 5 |  |
| Total Points |  |

1. Let $f(x)=\frac{2}{x+5}$. Use the limit definition of the derivative to find $f^{\prime}(x)$. (NOTE: NO credit will be given if another method is used.)
2. Find all vertical and horizontal asymptotes of the graph $y=\frac{2 x^{2}-4 x-6}{x^{2}-1}$.
3. Evaluate $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{3}{x}\right)$.
4. Find an interval where the equation $x^{3}+2 x+1=0$ has at least one solution and explain why it has such a solution.
5. Consider the function

$$
f(x)= \begin{cases}x+2, & x<0 \\ \frac{x-1}{x^{2}-1}, & 0 \leq x<2 \\ \frac{1}{x-3}, & x \geq 2\end{cases}
$$

Give all the values of $x$ at which each of the following types of discontinuities occur. If no such discontinuity occurs, write NA in the correct space.

Removable Discontinuity:

Jump Discontinuity:

Infinite Discontinuity:

