Exam 3 Review Answer Key

Disclaimer: This answer key should not be provided to students.

1. Solve the differential equation.

(a)
$$y' = xy^2$$
 (Answer: $y = -\frac{2}{x^2 + C}$)
(b) $y' = \frac{y \ln x}{x}$ (Answer: $y = Ce^{[(\ln(x))^2/2]}$)
(c) $y' = 2 - y$ with initial condition $y(0) = 3$. (Answer: $y = 2 + e^{-x}$)
(d) $y' = 3xy - 2x$ with initial condition $y(0) = 1$. (Answer: $y = \frac{1}{3}e^{[3x^2/2]} + \frac{2}{3}$)

2. Use Euler's method to approximate the indicated function value to 3 decimal places, using h = 0.1.

(a)
$$\frac{dy}{dx} = x^2 + y^2$$
, $y(0) = 2$; find $y(0.5)$. (Answer: $y(0.5) \approx 8.273$)
(b) $\frac{dy}{dx} = 1 + \frac{y}{x}$, $y(1) = 0$; find $y(1.4)$. (Answer: $y(1.4) \approx 0.452$)

3. Find the value of k that will make f a probability density function on the indicated domain.

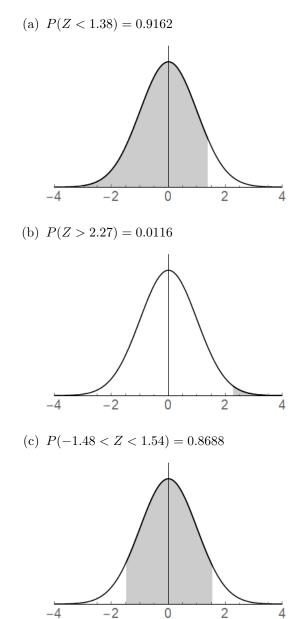
(a)
$$f(x) = k\sqrt{x}; 1 \le x \le 4$$
 (Answer: $k = \frac{3}{14}$)
(b) $f(x, y) = ky\sqrt{x}; D = \{0 \le x \le 2; 1 \le y \le 2\}$ (Answer: $k = \frac{1}{2\sqrt{2}}$)

4. f is a probability density function for a random variable X defined on the given interval. Find the indicated probabilities.

(a)
$$f(x) = \frac{1}{4\sqrt{x}};$$
 [1,9]
(i) $P(X \ge 4) = \frac{1}{2}$
(ii) $P(X \le 4) = \frac{1}{2}$
(iii) $P(1 \le X < 8) = \sqrt{2} - \frac{1}{2}$
(iv) $P(X = 3) = 0$
(b) $f(x) = 2xe^{-x^2};$ [0, ∞)
(i) $P(X \le 4) = 1 - e^{-16}$
(ii) $P(X \ge 2) = e^{-4}$
(iii) $P(1 < X < 2) = \frac{e^3 - 1}{e^4}$

- 5. f is a joint probability density function for the random variables X and Y on D. Find the indicated probabilities.
 - (a) $f(x, y) = xy; \quad D = \{0 \le x \le 1; \ 0 \le y \le 2\}$ (i) $P(0 \le X \le 1; \ 0 \le Y \le 1) = \frac{1}{4}$ (ii) $P(X + 2Y \le 1) = \frac{1}{96}$ (b) $f(x, y) = \frac{1}{12}(x + y); \quad D = \{0 \le x \le 2; \ 1 \le y \le 3\}$ (i) $P(1 \le X \le 2; \ 0 \le Y \le 1) = 0$ (ii) $P(Y \ge 1; \ X + Y \le 3) = \frac{7}{18}$
- 6. Find the mean, variance, and standard deviation of the random variable X associated with the probability density function over the indicated interval.
 - (a) $f(x) = \frac{3}{8}x^2$ [0,2] Answer: $\mu = \frac{3}{2}$, $\sigma^2 = \frac{3}{20}$, $\sigma = \sqrt{\frac{3}{20}}$ (b) $f(x) = \frac{3}{x^4}$ [1, ∞) Answer: $\mu = \frac{3}{2}$, $\sigma^2 = \frac{3}{4}$, $\sigma = \frac{\sqrt{3}}{2}$ (c) $f(x) = \frac{5}{2}x^{3/2}$ [0,1] Answer: $\mu = \frac{5}{7}$, $\sigma^2 = \frac{20}{441}$, $\sigma = \frac{\sqrt{20}}{21}$

7. Let Z be the standard normal random variable. Find the value of the given probability, then make a sketch of the area under the standard normal curve associated with this probability.



- 8. The medical records of infants delivered at Shands Hospital show that the infants' lengths at birth (in inches) are normally distributed with a mean of 20 in and a standard deviation of 2.6 in. Find the probability that an infant selected at random from among those at the hospital measures:
 - (a) More than 22 in.

Answer: P(Z > 0.77) = 0.2206

(b) Less than 18 in.

Answer: P(Z < -0.77) = 0.2206

(c) Between 19 and 21 in.

Answer: P(-0.38 < Z < 0.38) = 0.296

- 9. Let Z be the standard normal random variable. Find the values of z such that:
 - (a) P(Z < z) = 0.8907 (Answer: z = 1.23)
 - (b) P(Z > z) = 0.9678 (Answer: z = -1.85)
- 10. Find the third degree Taylor polynomial of the function f(x) centered at x = a.
 - (a) $f(x) = \ln(x+1); \quad a = 0$ Answer: $P_3(x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3$ (b) $f(x) = \sqrt{x}; \quad a = 4$ Answer: $P_3(x) = 2 + \frac{1}{4}(x-4) - \frac{1}{64}(x-4)^2 + \frac{1}{512}(x-4)^3$ (c) $f(x) = \frac{1}{1-x}; \quad a = 2$ Answer: $P_3(x) = -1 + (x-2) - (x-2)^2 + (x-2)^3$
- 11. Using your answer from 10(a), estimate

$$\int_0^{1/2} \ln(x+1) dx.$$

Compare your result with the exact value of the integral using integration by parts. What is the exact error associated with the approximation?

Answer:
$$\int_{0}^{1/2} P_{3}(x) dx = \int_{0}^{1/2} x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} dx = \frac{7}{64} = 0.109375$$
$$\int_{0}^{1/2} \ln(x+1) dx = \frac{3}{2} \ln\left(\frac{3}{2}\right) - \frac{1}{2} \approx 0.1081977$$

Exact error = 0.109375 - 0.1081977 = 0.0011773

12. Approximate $\sqrt{1.1}$ using the second degree Taylor polynomial of $f(x) = \sqrt{x+1}$ centered at x = 0. Without calculating $\sqrt{1.1}$, find a bound for the error in the approximation.

Answer:
$$P_2(x) = 1 + \frac{1}{2}x - \frac{1}{8}x^2$$

 $\sqrt{1.1} \approx P_2(0.1) = 1.04875$
 $|R_2(0.1)| \le 0.0000625$

- 13. Write down the first three terms of the sequence $\{a_n\}$. Then determine the convergence or divergence of the sequence.
 - (a) $a_n = 2^{n-1}$

Answer: The sequence $\{1, 2, 4, ...\}$ diverges.

(b)
$$a_n = \frac{2n^2}{n^2 + 1}$$

Answer: The sequence $\left\{1, \frac{8}{5}, \frac{9}{5}, \ldots\right\}$ converges (to 2).

- 14. Find the n^{th} term of the sequence (assuming that the 'obvious' pattern continues). Then determine whether the sequence converges or diverges.
 - (a) $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \frac{1}{8}, \dots$ Answer: The sequence $\left\{\frac{1}{2n}\right\}$ converges (to 0). (b) $1, 4, 7, 10, \dots$

Answer: The sequence $\{3n-2\}$ diverges.

- 15. Given a_n , determine the convergence or divergence of both $\{a_n\}$ and $\sum_{n=0}^{\infty} a_n$. If the sequence/series converges, determine what it converges to.
 - (a) $a_n = \frac{1}{n+1} \frac{1}{n+2}$ Answer: $\{a_n\}$ converges to 0 and $\sum_{n=0}^{\infty} a_n$ converges to 1.

(b)
$$a_n = 2e^{-n}$$

Answer: $\{a_n\}$ converges to 0 and $\sum_{n=0}^{\infty} a_n$ converges to $\frac{2}{1-\frac{1}{e}} = \frac{2e}{e-1}$.

16. Determine whether the series converges or diverges. If it converges, find its sum.

(a)
$$\sum_{n=0}^{\infty} 4\left(-\frac{2}{3}\right)^n$$

Answer: The series converges to $\frac{12}{5}$.

(b)
$$\sum_{n=0}^{\infty} \left(\frac{5}{4}\right)^n$$

Answer: The series diverges.

(c)
$$1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \cdots$$

Answer: The series $\sum_{n=0}^{\infty} \left(-\frac{1}{3}\right)^n$ converges to $\frac{3}{2}$.