MAC 2234: Survey of Calculus II

Practice Exam \# 1

The actual exam will be very similar to this practice test. You will have 120 minutes to complete the exam in Canvas. I suggest you attempt this under time restrictions to get the best practice possible.
(1) Find the indefinite integral:

$$
\int\left(4 x^{2}-x^{-3}+e^{2 x}\right) d x
$$

(2) Find the indefinite integral:

$$
\int \frac{3(\ln x)^{2}}{x} d x
$$

(3) Find an approximation of the area of the region R under the graph of $f(x)=8-x^{3}$ on the interval $[0,2]$. Use $n=4$ subintervals and choose the sample points to be the left endpoints of the subintervals; that is, find the left endpoint Riemann sum L_{4}.
(4) Find the area of the region under the graph of $f(x)=4-\sqrt{x}$ on the interval $[0,4]$.
(5) Find the indefinite integral:

$$
\int x^{2} \ln x d x
$$

(6) Evaluate the definite integral via integration by parts:

$$
\int_{1}^{3} x e^{-x} d x
$$

(7) Use the Trapezoidal Rule and Simpson's Rule to estimate the value of the definite integral to 4 decimal places:

$$
\int_{0}^{1} \sqrt{1+x^{4}} d x ; \quad n=4 \text { subdivisions }
$$

(8) Find the area of the region under the curve $y=16 /(x+1)^{3 / 2}, x \geq 3$.
(9) Is the function $f(x)=0.006 x(10-x), 0 \leq x \leq 10$ a probability density function on $[0,10]$?
(10) The lifespan of a certain light bulb (in hours) is described by the probability density function

$$
f(t)=0.001 e^{-0.001 t}
$$

(a) Find the probability that a bulb fails within the first 200 hours.
(b) Find the probability that a bulb burns for more than 800 hours.
(11) Let μ be the mean, v the variance, and s the standard deviation of the random variable X associated to the probability density function $f(x)=64 / x^{5}, 2 \leq x<\infty$. Compute $\mu+v+s$.
(12) Find the second order Taylor polynomial of $f(x)=\sqrt{1+x}$ at $x=3$.

