1. Find each value at which $f(x)=\frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}$ has a relative maximum or minimum. Find the absolute extrema of $f(x)$ on $[-2,1]$.

$$
\begin{aligned}
f^{\prime}(x) & =x^{3}-x^{2}-2 x \\
0 & =x\left(x^{2}-x-2\right)=x(x-2)(x+1) \quad x=-1,0,2
\end{aligned}
$$

relative \max at $x=0$
\min at $x=-1,2$
on $[-2,1]$ there is a critical point at $x=-1,0$

$$
f(-2)=8 / 3
$$

$f(-1)=-\frac{5}{12}$
$f(0)=0$ absolute max on $[-2,1] \quad\left(-2, \frac{8}{3}\right)$
absolute min

$$
\left(1,-\frac{13}{12}\right)
$$

$$
f(6)=-\frac{13}{12}
$$

2. Find all critical numbers and relative extrema

$$
\text { relative } \max \left(4,-\frac{3}{16}\right)
$$

$$
\begin{aligned}
& \text { of } g(x)=\frac{1}{2 \sqrt{x}}-\frac{1}{x^{2}} .=\frac{1}{2} X^{-\frac{1}{2}-X^{-2}} \\
& g^{\prime}(x)=-\frac{1}{4} x^{-\frac{3}{2}}+2 x^{-3}=0 \\
& 0=-4 x^{3} \cdot\left(-\frac{1}{4} x^{-\frac{3}{2}}+2 x^{-3}\right) \\
& 0=x^{3 / 2}-8 \\
& 8=x^{3 / 2} \\
& x=8^{2 / 3}=\underset{4}{4,} \quad \underbrace{\text { max }}_{4} \\
& g(4)=\frac{1}{2 \sqrt{4}}-\frac{1}{16} \\
& =\frac{1}{4}-\frac{1}{16} \\
& =\frac{-3}{16}
\end{aligned}
$$

3. Let $f(x)=\frac{\sqrt[3]{3 x-2}}{x}=\frac{(3 x-2)^{\frac{1}{3}}}{X}$
(a) Find $f^{\prime}(x)$ and write as a single fraction.
(b) Find the equation of each horizontal and vertical tangent line of $f(x)$.
(c) Find each x-value at which $f(x)$ has a critical number.
(d) Find the relative extreme values of $f(x)$.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\frac{1}{3}(3 x-2)^{-2 / 3}(3) x-(3 x-2)^{1 / 3}}{x^{2}} \\
& 0=\frac{\frac{x}{(3 x-2)^{2 / 3}}-(3 x-2)^{1 / 3}}{x^{2}} \cdot \frac{(3 x-2)^{\frac{2}{3}}}{(3 x-2)^{\frac{2}{3}}} \\
&=\frac{x-(3 x-2)}{x(3 x-2)^{2 / 3}}=\frac{-2 x+2}{x(3 x-2)^{2 / 3}}=0 \quad-2 x=-2 \\
& x=1
\end{aligned}
$$

$(3 x-2)^{2 / 3}=0$ when $x=\frac{2}{3}$
horizontal tangent line at $x=1 \quad f(1)=\frac{\sqrt[3]{3-2}}{1}=1$ $y=1$
vertical tangent line $x=\frac{2}{3}$
critical numbers at $x=1,2 / 3$

relative max at $x=1$
4. The cost function for a product is

$$
C(x)=1.25 x^{2}+25 x+8000
$$

(a) Suppose the company decides to increase production by 4 units per day when the current daily production level is 50 units. Find the rate of change of cost with respect to time.
$\frac{d x}{d t}=4$
when $x=50$

$$
\begin{aligned}
\frac{d c}{d t} & =\left(\frac{5}{4} \cdot 2 x+25\right) \frac{d x}{d t} \\
\frac{d c}{d t} & =\left(\frac{5}{2}(50)+25\right)(4) \\
& =150.4=600
\end{aligned}
$$

(b) Find the marginal cost when 50 units are produced. What does it tell you?

$$
\begin{aligned}
& C^{\prime}(x)=\frac{5}{2} x+25 \\
& C^{\prime}(50)=150
\end{aligned}
$$

(c) If $C(x)=1.25 x^{2}+25 x+8000$, find each interval on which average cost is increasing and decreasing. For what production level x is average cost minimized?

$$
\begin{aligned}
\begin{array}{l}
\text { Average } \\
\text { cost }
\end{array} \overline{\bar{c}}(x)=\frac{c(x)}{x} & =\frac{1.25 x^{2}+25 x+8000}{x} \\
\bar{c}(x) & =\frac{5}{4} x+25+\frac{8000}{x} \\
\bar{c}^{\prime}(x) & =\frac{5}{4}-\frac{8000}{x^{2}}=0 \\
0000 & =5
\end{aligned}
$$

5. The demand function for a certain product is given by $p(x)=-0.02 x+400,0 \leq x \leq 20,000$, where p is the unit price when x items are sold. The cost function for the product is $C(x)=100 x+300,000$.
(a) Find the marginal profit of the product when $x=2000$.

$$
\begin{aligned}
\text { Profit } & =\text { Revenue }- \text { cost } \\
& =x P(x)-C(x) \\
& =x(-.02 x+400)-(100 x+300,000) \\
P(x) & =-.02 x^{2}+300 x-300,000 \quad P^{\prime}(2000)=-.04(2000)+300 \\
P^{\prime}(x) & =-.04 x+300
\end{aligned}
$$

(b) Find the actual profit from the sale of the 2001st item. Compare to your answer in (a).

$$
P(2001)-P(2000)=219.98
$$

(c) Find each interval on which the profit function $P(x)=-0.02 x^{2}+300 x-$ 300,000 is increasing and decreasing. Remember that $0 \leq x \leq 20,000$. How many items should be sold to maximize profit? At what price?

$$
0=.04 x+300 \quad x=7500
$$

$$
p(7500)=-.02(7500)+400=250
$$

6. Find all relative extrema of $f(x)=2 x^{5 / 3}-5 x^{2 / 3}$. Then find the absolute extrema of $f(x)$ on $[-8,0]$. Compare the two methods.

$$
f^{\prime}(x)=\frac{10}{3} x^{\frac{1}{3}}-\frac{10}{3} x^{-\frac{1}{3}}=0
$$

$x-1=0 \quad x=1 \quad$ critical points at $x=0,1$ relative $\max f(0)=0 \quad f(-8)=-84 \quad$ absolute min $\min f(1)=-3 \quad f(0)=0$ absolute \max
7. Find the absolute maximum and minimum values of $f(x)=e^{x^{3}-12 x}$ on $[0,3]$.

$$
\begin{aligned}
& f^{\prime}(x)=\left(3 x^{2}-12\right) e^{x^{3}-12 x}=0 \quad 3 x^{2}-12=0 \quad x^{2}=4 \quad x= \pm 2 \\
& f(0)=1 \quad \max \\
& f(2)=e^{-16} \min \\
& f(3)=e^{-9}
\end{aligned}
$$

8. Find the maximum and minimum values of $f(x)=x^{2}-8 \ln x$ on $[1, e]$.

$$
\begin{aligned}
& f^{\prime}(x)=2 x-\frac{8}{x}=0 \quad \begin{array}{r}
2 x^{2}=8 \\
x= \pm 2
\end{array} \\
& f(1)=1 \text { max } \\
& f(2)=4-8 \ln (2) \min \\
& f(e)=e^{2}-8
\end{aligned}
$$

9. The position (in centimeters) of a particle moving in a straight line at time t (in seconds) is given by $s(t)=t^{3}-6 t^{2}+9 t$ for $0 \leq t \leq 6$.
(a) Find the velocity function $v(t)$.
(b) At what times) is the particle at rest?
(c) For what time intervals) over the first six seconds is the particle traveling in a positive direction?
(d) Find the average velocity from $t=0$ to $t=4$ seconds.
(e) What is the acceleration of the particle after $3 / 2$ second? Include units in your answer.
(f) Find each interval on which the particle is (1) speeding up and (2) slowing down
a) $v(t)=s^{\prime}(t)=3 t^{2}-12 t+9$
b) particle is at rest when $r(t)=0$
c) $0=3(t-4 t+3)=3(t-3)(t-1)$

traveling in a positive direction

$$
(0,1) \text { and }(3,6)
$$

d) $\underset{\text { velocity }}{\operatorname{average}}=\frac{5(4)-5(0)}{4-6}=\frac{4}{4}=1$
e) $a(t)=v^{\prime}(t)=s^{\prime \prime}(t)=6 t-12$

inflection point at $x=-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
10. Find each interval on which $f(x)=e^{1-x^{2}}$ is concave up and down, and find each inflection point of the graph of f.

$$
\begin{aligned}
& f^{\prime}(x)=-2 x e^{1-x^{2}} \\
& f^{\prime \prime}(x)=-2 e^{1-x^{2}}+4 x^{2}=0=-2 e^{1-x^{2}}\left(1-2 x^{2}\right) \quad x= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

concave up $\left(-\infty,-\frac{1}{\sqrt{2}}\right) \cup\left(\frac{1}{\sqrt{2}}, \infty\right)$
concave down $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
11. Find all intervals on which the graph of

$$
f(x)=\frac{x^{4}}{4}+2 x^{3}+\frac{9}{2} x^{2}+8 \text { is .both decreasing }
$$

and concave up.

$$
\begin{aligned}
& f^{\prime}(x)=x^{3}+6 x^{2}+9 x=x\left(x^{2}+6 x+9\right)=x(x+3)^{2} \\
& x=0,-3 \\
& f^{\prime \prime}(x)=3 x^{2}+12 x+9=3\left(x^{2}+4 x+3\right)=3(x+3)(x+1) \\
& x=-1,-3 \\
& (-\infty,-3),(-1,0)
\end{aligned}
$$

12. Find each interval on which $f(x)=\ln x+\frac{1}{x}$ domain $(0, \infty)$

$$
\begin{gathered}
f^{\prime}(x) \stackrel{x^{2 i} \text { both increasing and concave do }}{=} \frac{1}{x}-\frac{1}{x^{2}}=0 \cdot x^{2} \\
x-1=0 \\
f^{\prime \prime}(x) \stackrel{x^{3} x=1}{=}-\frac{1}{x^{2}}+\frac{2}{x^{3}}=0 \\
-x+2=0 \\
x=2
\end{gathered}
$$

$(2, \infty)$
inflection point $f(2)=\ln 2+\frac{1}{2} \quad\left(2, \ln 2+\frac{1}{2}\right)$

$$
f^{\prime}=0 \text { at } x=-2,1,5
$$

13. Suppose that $[f(x)$ has horizontal tangent lines at $x=-2, x=1$ and $x=5$. If $f^{\prime \prime}(x)>0$ on intervals $(-\infty, 0)$ and $(2, \infty)$ and $f^{\prime \prime}(x)<0$ on the interval $(0,2)$, find the x - values at which $f(x)$ has relative extrema. Assume that f and f^{\prime} are continuous on $(-\infty, \infty)$ and use the Second Derivative test.

$$
\begin{aligned}
& f^{\prime \prime}(-2)>0 \Rightarrow \text { concave up } \Rightarrow \text { relative } \min \\
& f^{\prime \prime}(1)<0 \Rightarrow \text { concave down } \Rightarrow \text { relative } \max \\
& f^{\prime \prime}(5)>0 \Rightarrow \text { concave up } \Rightarrow \text { relative } \min
\end{aligned}
$$

14. Given the graph of the derivative $f^{\prime}(x)$, find each interval on which the function $f(x)$ is increasing and decreasing, and find the x-coordinate of each point at which $f(x)$ has a local maximum or minimum value. Find each interval on which $f(x)$ is concave up and down, and the x-coordinate of each inflection point. Assume that the domain of $f(x)$ is $(-\infty, \infty)$.
critical points at

discontinuous at $x=4$

derivative is increasing $(-\infty, 0),(1, \infty)$
\Rightarrow concave up
derivative is decreasing
 $(0,1),(4,+\infty) \Rightarrow$ concave down
relative \min at $x=-1$
15. Suppose that $f^{\prime}(x)=15 x^{4}-15 x^{2}$. Find each x-value at which the function $f(x)$ has relative extrema. Find the x-coordinate of each inflection point. Sketch a possible graph of $f(x)$ if $f(x)$ passes through the origin.
$0=15 x^{2}\left(x^{2}-1\right)$ $x= \pm 1,0$

$$
f^{\prime \prime}(x)=60 x^{3}-30 x
$$

$$
=30 x\left(x^{2}-2\right)
$$

$x= \pm \sqrt{8}, 0$

pants of inflection at $x= \pm \sqrt{2}, 0$
relative max at $x=-1$ \min at $x=1$

16. A drug that stimulates reproduction is introduced into a population of viruses. That population can be modeled by the function $P(t)=30 t^{2}-t^{3}+200,0 \leq t \leq$ 30 , where $P(t)$ is the population after t minutes.
(a) At what time does the population reach its maximum? What is the maximum population?

$$
P^{\prime}(t)=60 t-3 t^{2}=3 t(20-t)
$$

at $t=20$ the population reaches its maximum
(b) At what time is the rate of growth of the population maximized?

$$
p^{\prime \prime}(t)=60-6 t=6(10-t)
$$

10
at $t=10$
17. A farmer wishes to fence an area next to his barn. He needs a wire fence that costs $\$ 1$ per linear foot in front of the barn and and wooden fencing that costs $\$ 2$ per foot on the other sides. Find the lengths x (sides perpendicular to the
 barn) and y (side across from the barn) so that he can enclose the maximum area if his budget for materials is $\$ 4400$.

$$
\left.\left.\begin{array}{rlrl}
1 x+2 x+2 y+2 y=4400 & 3 x+4 y & =4400 \\
A(x) & =x y \\
& =x\left(1100-\frac{3}{4} x\right) \\
& =1100 x-\frac{3}{4} x^{2} \\
& =1100-\frac{3}{4} x
\end{array}\right\} \begin{array}{rl}
A^{\prime}(x) & =1100-\frac{3}{2} x=0 \\
\frac{3}{2} x & =1100 \quad x=\frac{2200}{3} \quad y
\end{array}\right)=1100-\frac{8}{4} \cdot \frac{2200}{3} .
$$ stores, an average of 50 games sell per month at the regular price of $\$ 40$. The manager of the department has observed that when the video game is put on sale, an average of 5 more games will sell for each $\$ 2$ price decrease. If each video game costs the store $\$ 24$ and there are fixed costs of $\$ 5600$, how many should be sold in a given month to maximize profit? What price should they charge? Assume that the demand function $p(x)$ is linear.

$$
\begin{aligned}
& m=\frac{\Delta p}{\Delta x}=-\frac{2}{5} \\
& \cos t=\text { fixed cost }+24 x \\
& C(x)=3600+24 x \\
& p(x)=m x+b \\
& 40=-\frac{2}{5}(50)+b \\
& 40=-20+b \quad b=60 \\
& \text { Profit }=\text { Revenue }- \text { cost } \\
& p(x)=-\frac{2}{5} x+60 \\
& P^{\prime}(x)=-\frac{4}{5} x+36 \\
& 0=-\frac{4}{5} x+36 \\
& \frac{4}{5} x=36 \\
& =45 \text { will maximize } \\
& P(x)=x p(x)-c(x) \\
& =x\left(-\frac{2}{5} x+60\right)-(3600+24 x) \\
& =-\frac{2}{5} x^{2}+36 x-3600 \\
& \begin{aligned}
p(45) & =-\frac{2}{5}(45)+60 \\
& =42
\end{aligned} \\
& =42
\end{aligned}
$$ $\$ 42$

19. The revenue $R(x)$ generated from sales of a certain product is related to the amount of money spent on advertising according to the model $R(x)=\frac{1}{10,000}\left(600 x^{2}-\right.$ $\left.x^{3}\right), 0 \leq x \leq 600$, where x and $R(x)$ are measured in thousands of dollars. Find each interval over which $R(x)$ is increasing. For the interval on which $R(x)$ is
$x=200$ diminishing returns on $(200,600)$

$$
6 x=1200
$$

Tpoint of inflection, point of diminishidag
20. Consider the function $f(x)=x^{1 / 3}(x+3)$ and its first two derivatives,

$$
f^{\prime}(x)=\frac{4 x+3}{3 x^{2 / 3}} \text { and } f^{\prime \prime}(x)=\frac{4 x-6}{9 x^{5 / 3}}
$$

Find all intercepts, asymptotes, relative extrema and inflection points. Sketch the graph of $f(x)$.
x-intercepts $(0,0),(-3,0)$ no asymptotes y-intercept $(0,0)$ tical
$f^{\prime}(x)=0=\frac{4 x+3}{3 x^{2 / 3}}$ critical points at $x=0,-\frac{3}{4}$ change fine

$$
\begin{aligned}
f^{\prime \prime}(x)=0 & =\frac{4 x-6}{9 x^{5 / 3}} \\
x & =\frac{3}{2}
\end{aligned}
$$

relative min at

$$
x=-\frac{3}{4}
$$

$$
\begin{aligned}
& \text { increasing, find the point of diminishing returns. Why is it significant? } \\
& R^{\prime}(x)=\frac{1}{10,000}\left(1200 x-3 x^{2}\right)=\frac{1}{10,000} x(1200-3 x) \\
& 3 x=1200 \\
& x=400 \\
& R^{n}(x)=\frac{1}{10,000}(1200-6 x)
\end{aligned}
$$

$$
x, y \text {-intercept }(0,0)
$$

asymptotes $x= \pm 1$
21. Sketch the graph of $f(x)=\frac{x^{3}}{1-x^{2}}$ if

$$
f^{\prime}(x)=\frac{x^{2}\left(3-x^{2}\right)}{\left(1-x^{2}\right)^{2}} \text { and } f^{\prime \prime}(x)=\frac{2 x\left(x^{2}+3\right)}{\left(1-x^{2}\right)^{3}}
$$

$f^{\prime}(x)=\frac{x^{2}\left(3-x^{2}\right)}{\left(\left(-x^{2}\right)^{2}\right.}=0 \quad$ critical points $x=0, \pm \sqrt{3}$
$f^{\prime \prime}(x)=\frac{2 x\left(x^{2}+3\right)}{\left(1-x^{2}\right)^{3}}=0 \quad x=0<$ point of inflection

22. Given the graph of the derivative $f^{\prime}(x)$, find a possible graph of the function $f(x)$. Assume that $f(-1)=-2, f(0)=0, f(1)=1, f(2)=3$ and $f(3)=5$, and that $f(x)$ is a continuous function. Be sure to find all extrema and inflection points.

Part I: Multiple Choice

1. The slope of a curve $y=f(x)$ at any point is given by $f^{\prime}(x)=\frac{6 x-1}{\sqrt{x}}$. If the curve passes through the point $(1,1)$, find $f(4)$.

$$
\begin{aligned}
f(x)=\int^{\text {a. } 29} f^{\prime}(x) d x & =\int \frac{6 x-1}{x^{\frac{1}{2}}} d x \\
& =\int 6 x \frac{1}{2}-x^{-\frac{1}{2}} d x \\
f(x) & =6 \cdot \frac{2}{3} x^{3 / 2}-2 x^{\frac{1}{2}}+C \\
f(1) & =4(1)^{3 / 2}-2(1)+c=1 \Rightarrow c=-1 \\
f(x) & =4 x^{3 / 2}-2 x^{1 / 2}-1 \\
f(4) & =4 \cdot 4^{3 / 2}-2 \cdot 4^{1 / 2-1}=32-4-1=27
\end{aligned}
$$

2. If $f^{\prime}(x)=\frac{(\ln x)^{2}}{x}$ and $f(e)=-1$, find $f\left(e^{4}\right)$.

$$
\begin{aligned}
& f(x)=\int_{v^{2} \frac{1}{\text { a. }} \frac{1}{\left.\frac{2}{3} x\right)^{2}}}^{x} d x \quad \begin{array}{l}
\text { b. } \ln 4 \\
v=\ln x^{3} \\
d v=\frac{16}{e^{4}}
\end{array} d x
\end{aligned}
$$

$$
\begin{aligned}
& \int u^{2} d u=\frac{u^{3}}{3}+C^{x} \\
& f(x)=\frac{(\ln x)^{3}}{3}+c \\
& f(e)=\frac{\left(\operatorname{lin}^{3} e\right)^{3}}{3}+c=-1 \\
& \begin{array}{l}
f(x)=\frac{(\ln x)^{3}}{3}-\frac{4}{3}
\end{array} \\
& f\left(e^{4}\right)=\frac{\left(\ln e^{4}\right)^{3}}{3^{3}}-\frac{4}{3} \\
& =\frac{4^{3}}{3}-\frac{4}{3}=\frac{60}{3}
\end{aligned}
$$

${ }^{\text {3 }}$. Let $f(x)=\frac{2}{x}$. What is the exact area of the region bounded by $f(x)$ and the x-axis from $x=1$ to $x=3$?

$$
\begin{aligned}
\int_{1}^{3} \frac{2}{x} d x & =\left.2 \ln |x|\right|_{1} ^{3} \\
& =2 \ln |3|-2 \ln 9|1| \\
& =2 \ln (3) \\
& =\ln 9
\end{aligned}
$$

c. $\ln 3$
d. $\ln 9-2$
e. 9
4. The marginal revenue and cost functions for a new product are $R^{\prime}(x)=72-0.2 x$ and $C^{\prime}(x)=0.4 x$ respectively where x is the number of items sold. Find the profit function $P(x)$ if the developers of the product will lose their initial investment of $\$ 1200$ if there are no sales.
Hint: Profit $=$ Revenue - Cost. What is $P(0) ? \quad P(0)=-1200$
a. $P(x)=72-0.6 x-1200$
b. $P(x)=72 x+0.1 x^{2}-1200$
c. $P(x)=72 x-0.3 x^{2}-1200$
d. $P(x)=72 x+0.1 x^{2}+1200$

$$
\begin{aligned}
P(x) & =\int R_{1}^{\prime}(x)-C^{\prime}(x) d x \quad P(x)=72 x-.3 x^{2}-1200 \\
& =\int 72-.2 x-.4 x d x \\
& =\int 72-.6 x \\
& =72 x-.3 x^{2}+C \\
P(0) & =0+C=-1200 \Rightarrow C=-1200
\end{aligned}
$$

$$
\begin{aligned}
0 & =4-2 x \\
2 x & =4 \\
x & =2
\end{aligned}
$$

5. Find the area (in square units) of the regions) bounded by $f(x)=4-2 x$ and the x-axis from $x=0$ to $x=3$. Be sure to sketch the area.
a. 3
b. 4
$\rightarrow>$
d. $\frac{7}{2}$
e. 6

$$
\begin{aligned}
& \int_{0}^{2} 4-2 x d x-\int_{2}^{3} 4-2 x d x \\
= & 4 x-\left.x^{2}\right|_{0} ^{2}-\left.\left(4 x-x^{2}\right)\right|_{2} ^{3} \\
= & 4 \cdot 2-2^{2}-\left(4 \cdot 3-3^{2}\right)+\left(4 \cdot 2-2^{2}\right) \\
= & 8-4-(12-9)+8-4 \\
= & 4-3+4 \\
= & 5
\end{aligned}
$$

6. Evaluate $\int_{0}^{3}(4-2 x) d x$. Compare to the previous problem.
a. 3
b. 4
c. 5

$$
\begin{aligned}
\int_{0}^{3} 4-2 x d x & =4 x- \\
& =12-9 \\
& =3
\end{aligned}
$$

c. 5
7. Find the maximum and minimum values of $f(x)=x e^{-x}$ on $[0,3]$.
a. $\frac{3}{e^{3}}$ and $-e$
b. $\frac{1}{e}$ and $\frac{3}{e^{3}}$
C. $\frac{1}{e}$ and 0
d. $\frac{3}{e^{3}}$ and 0
e. 0 and $-e$

$$
\begin{aligned}
f^{\prime}(x) & =e^{-x}-x e^{-x} \\
0 & =e^{-x}(1-x) \quad x=1 \\
f(0) & =0 \quad \min \\
f(1) & =\frac{1}{e} \quad \max \\
f(3) & =\frac{3}{e^{3}}
\end{aligned}
$$

8. Evaluate $\int\left(x-\frac{1}{x}\right)^{2} d x=\int\left(X-\frac{1}{X}\right)\left(x-\frac{1}{x}\right) d x$
a. $\frac{x^{3}}{3_{3}}-\frac{1}{x}+C$

$$
=\int x^{2}-2+\frac{1}{x^{2}} d x
$$

b. $\frac{x^{3}}{3}+\ln (2 x)+C$
c. $\frac{1}{3}\left(x-\frac{1}{x}\right)^{3}+C$

$$
=\frac{x^{3}}{3}-2 x-\frac{1}{x}+C
$$

d. $\frac{x^{3}}{3}-2 x-\frac{1}{x}+C$ e. $\frac{x^{3}}{3}-2 x+\ln \left(x^{2}\right)+C$

Indicate whether each statements is true or false.
9. If $F(x)$ and $G(x)$ are both antiderivatives of $f(x)$ on an interval, then $F(4)$ must equal $G(4)$.
a. True
b. False

$$
\int e^{b x} d x=\frac{1}{b} e^{b x}+c
$$

10. If $f(x)=e^{6 x}$, then
$\int f(x) d x=6 f(x)+C$.
a. True
b. False

$$
\int 4^{2 x+1} d x=\frac{4^{2 x+1}}{\ln (4)(2)}+C
$$

a. True
b. False
12. If $f(3)=-4, f^{\prime}(x)$ is continuous, and $\int_{3}^{6} f^{\prime}(x) d x=8$, then $f(6)=4$.

$$
\begin{aligned}
\int_{3}^{6} f^{\prime}(x) & =f(6)-f(3) \\
& =4-(-4) \\
& =8
\end{aligned}
$$

Part II: Work each problem

1. (a) If $f(x)=x^{2}+2 x-3$ find the actual change in f when x changes from 0 to 0.15 .
a) (b) Find the approximate change in $f(x)$ using differentials.

$$
f(.15)-f(0)=.3225 \quad \Delta x=.15-0=.15
$$

b)

$$
\begin{aligned}
\Delta y & \approx f^{\prime}(x) \Delta x & & f^{\prime}(x)=2 x+2 \\
& =2(.15) & & f^{\prime}(0)=2 \\
& =.3 & &
\end{aligned}
$$

2. The demand function for a product is $p(x)=45-\frac{\sqrt{x}}{2}$ where p is the price at which x items will sell.
(a) Use differentials to approximate the change in revenue when the number of units sold decreases from 1600 to 1590 . What is the exact change in revenue?

$$
\begin{aligned}
R(x) & =x p(x) \\
& =x\left(45-\frac{\sqrt{x}}{2}\right) \\
& =45 x-\frac{x^{3 / 2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
R^{\prime}(x) & =45-\frac{3}{4} x^{\frac{1}{2}} \\
R^{\prime}(1600) & =45-\frac{3}{4}(40) \\
& =15 \\
\Delta x & =1590-1600
\end{aligned}
$$

$$
\begin{aligned}
\Delta R & \approx R^{\prime}(1600) \Delta x & \Delta R & =R(1590)-R(1600) \\
& =15(-10) & & =-150.47 \\
& =-150 & &
\end{aligned}
$$

(b) Now suppose that the number of units sold is increasing by 20 per week. At what rate is revenue changing with respect to time at a production level of 900 units?

$$
\begin{aligned}
\frac{d x}{d t}=20 \quad \frac{d R}{d t} & =\left(45-\frac{3}{4} x^{\frac{1}{2}}\right) \frac{d x}{d t} \\
& =\left(45-\frac{3}{4}(900)^{\frac{1}{2}}\right)(20) \\
& =450
\end{aligned}
$$

Revenue is increasing. by $\$ 450 /$ week
(c) What price should be charged for the product in order to maximize revenue?

$$
\begin{gathered}
R^{\prime}(x)=45-\frac{3}{4} x^{\frac{1}{2}}=0 \\
\frac{3}{4} \times \frac{1}{2}=45 \\
x \frac{1}{2}=60 \\
x=3600 \\
p(3600)=45-\frac{\sqrt{3000}}{2}=15
\end{gathered}
$$

3. Find $f(x)$ so that $\int f(x) d x=(1+\ln x)^{2}+C$

$$
\begin{aligned}
f(x) & =\left[(1+\ln x)^{2}+c\right]^{\prime} \\
& =2(1+\ln x) \frac{1}{x}
\end{aligned}
$$

4. Evaluate each integral:
a) $\int_{3}^{8} \frac{3 x}{x^{2}-4} d x$
b) $\int \frac{(\sqrt{x}+1)^{2}}{x} d x$
c) $\int_{1}^{e} \frac{(1+2 \ln x)^{2}}{x} d x$
d) $\int \frac{e^{\frac{1}{2 x-1}}}{(2 x-1)^{2}} d x$
e) $\int_{0}^{4} \sqrt{3 x+4} d x$
f) $\int_{0}^{2} x e^{3 x^{2}} d x$
g) $\int_{2}^{5} \frac{x}{\sqrt{x-1}} d x$
a) $\int_{3}^{8} \frac{3 x}{x^{2}-4} d x$

$$
\begin{aligned}
& \frac{x}{\overline{x-1} d x} \\
& u=x^{2}-4 \quad \left\lvert\, \frac{3}{2} \int \frac{1}{v} d u\right.
\end{aligned}=\left.\frac{3}{2} \ln |u|\right|_{x=3} ^{x=8} 8
$$

b)

$$
\begin{aligned}
\int \frac{(\sqrt{x}+1)^{2}}{x} d x & =\int \frac{x+2 \sqrt{x}+1}{x} d x \\
& =\int 1+2 x^{-\frac{1}{2}}+\frac{1}{x} d x \\
& =x+2 \cdot \frac{2}{3} x^{\frac{3}{2}}+\ln |x|+C \\
& =x+\frac{4}{3} x^{3 / 2}+\ln |x|+C
\end{aligned}
$$

c)

$$
\begin{aligned}
\int_{1}^{e} \frac{(1+2 \ln x)^{2}}{x} d x \quad \begin{aligned}
u & =1+2 \ln x \\
d u & =\frac{1}{x} d x \\
& =\frac{(1+2 \ln x)^{3}}{3} u^{2} d u=\left.\frac{u^{3}}{3}\right|_{x=1} ^{x=e} \\
& =\frac{(1+2 \ln (e))^{3}}{3}-\frac{(1+2 \ln (-1))^{3}}{3} \\
& =\frac{3^{3}}{3}-\frac{1}{3}
\end{aligned}
\end{aligned}
$$

d) $\int \frac{e^{\frac{1}{2 x-1}}}{(2 x-1)^{2}} d x$

$$
\begin{aligned}
v & =\frac{1}{2 x-1}=(2 x-1)^{-1} \\
d v & =-(2 x-1)^{-2}(2) d x \\
-\frac{1}{2} d v & =\frac{1}{(2 x-1)^{2}} d x
\end{aligned}
$$

$$
=-\frac{1}{2} \int e^{v} d u=-\frac{1}{2} e^{v}+C
$$

$$
=-\frac{1}{2} e^{\frac{1}{2 x+1}}+c
$$

e)

$$
\int_{0}^{4} \sqrt{3 x+4} d x
$$

$u=3 x+4$
$d u=3 d x$

$$
\frac{1}{3} d v=d x
$$

$$
\frac{1}{3} \int_{x=0}^{x=4} v^{\frac{1}{2}} d v=\left.\frac{2}{9} v^{\frac{3}{2}}\right|_{x=0} ^{x=4}
$$

$$
={ }^{2}-\left.(3 x+4)^{\frac{3}{2}}\right|_{0} ^{4}
$$

$$
=\frac{\pi}{9}(16)^{3 / 2}-\frac{2}{3}(4)^{\frac{3}{2}}
$$

$$
=\frac{2}{9}(64-8)
$$

f)

$$
\text { f) } \begin{aligned}
\int_{0}^{2} x e^{3 x^{2}} d x & =\frac{1}{6} \int_{x=0}^{x=2} e^{u} d u \\
u=3 x^{2} & =\left.\frac{1}{6} e^{u}\right|_{x=2} ^{x=2} \\
d u=6 x d x & =\left.\frac{1}{6} e^{3 x^{2}}\right|_{0} ^{2} \\
\frac{1}{6} d u=x d x & =\frac{1}{6}\left(e^{12}-1\right)
\end{aligned}
$$

$$
=\frac{2}{a}(5 b)
$$

$$
=\frac{112}{9}
$$

$$
\begin{aligned}
& \text { g) } \int_{2}^{5} \frac{x}{\sqrt{x-1}} d x \\
& u=x-1 \Rightarrow u+1=x \\
& d u=d x \\
& \int_{x=2}^{x=5} \frac{u+1}{\sqrt{u}} d u=\int_{x=2}^{x=5} u^{\frac{1}{2}}+u^{-\frac{1}{2}} d u \\
& =\frac{2}{3} u^{\frac{3}{2}}+\left.20^{\frac{1}{2}}\right|_{x=2} ^{5} \\
& =\frac{2}{3}(x-1)^{\frac{3}{2}}+\left.2(x-1)^{\frac{2}{2}}\right|_{2} ^{5} \\
& =\frac{2}{3}(4)^{\frac{3}{2}}+2(4)^{\frac{1}{2}}-\left(\frac{2}{3}(1)^{\frac{3}{2}}+2(1)\right. \\
& =\frac{2}{3} \cdot 8+2 \cdot 2-\frac{2}{3}-2 \\
& =\frac{14}{3}+2 \\
& =\frac{20}{3}
\end{aligned}
$$

5. It is estimated that humans are consuming zinc at the rate $R^{\prime}(t)=15 e^{0.06 t}$ million metric tons per year, with $t=0$ in 2012. If 10 million metric tons were consumed in 2012, find a formula $R(t)$, the amount of zinc consumed in year t.

$$
\begin{aligned}
R(t) & =\int 15 e^{.06 t} d t \\
& =250 e^{.06 t}+C \quad R(t)=2.50 e^{.0 b t}-240 \\
R(0) & =250+C=10 \\
C & =-240
\end{aligned}
$$

6. The marginal revenue for a product is $100+0.4 x-0.3 x^{2}$. If the revenue from the sale of 20 items is $\$ 1280$, find the revenue and demand functions for the product.

$$
\begin{aligned}
R(20) & =1280 \\
R^{\prime}(x) & =100+.4 x-.3 x^{2} \\
R(x) & =\int 100+.4 x-.3 x^{2} d x \\
& =100 x+.2 x^{2}-.1 x^{3}+C \\
R(20) & =100(20)+.2(20)^{2}-.1(20)^{3}+C=1280 \\
1280+C & =1280 \\
C & =0
\end{aligned}
$$

$$
\begin{aligned}
& V(3)=\frac{3}{2} \\
& S(0)=0
\end{aligned}
$$

7. The acceleration of an object is given by $a(t)=\frac{2}{(t+1)^{2}} \mathrm{~cm} / \mathrm{sec}^{2}$. If the velocity after 3 seconds is $\frac{3}{2} \mathrm{~cm} / \mathrm{sec}$, find the displacement of the object from its starting point after the first two seconds.

$$
\begin{aligned}
V(t) & =\int \frac{2}{(t+1)^{2}} d t \begin{array}{ll}
v=t+1 \\
d v=d t & \\
S(t) & =\int-\frac{2}{t+1}+2 d v=-2 v^{-1}+C \\
S(t) & =-\frac{2}{t+1}+C \\
& =-2 \ln (t+1 \mid+2 t+C \\
S(t) & =-2 \ln \mid t+1)+2 t \\
& V(3)=-\frac{2}{4}+C=\frac{3}{2} \quad C=2 \\
\text { 8. The price of a particular model of a Toyota is increasing at the rate of }
\end{array}
\end{aligned}
$$

8. The price of a particular model of a Toyota is increasing at the rate of $\frac{3 t}{\sqrt{3 t^{2}+4}}$ thousand dollars t years after its introduction. If the retail price of the car when it was first introduced was $\$ 24,000$, find the retail price of that same model two years later.

$$
\begin{gathered}
P^{\prime}(t)=\frac{3 t}{\sqrt{3 t^{2}+4} \quad P(0)=24,000 \quad P(2)=?} \\
P(t)=\int \frac{3 t}{\sqrt{3 t^{2}+4}} d t \quad d=3 t^{2}+4 \\
\frac{1}{2} \int v^{-\frac{1}{2}} d u=3 t d t \\
P(t)=\sqrt{3 t^{2}+4}+C \\
P(0)=2+C=24,000 \quad C=23,998
\end{gathered}
$$

9. A car moving along a straight track has acceleration function $a(t)=e^{2 t}$ $\mathrm{m} / \mathrm{sec}^{2}$. The initial velocity is $3 \mathrm{~m} / \mathrm{sec}$ and the initial distance from an observer is 2 meters. Find its position function $s(t)$ which gives the position of the car from the observer after t seconds .

$$
\begin{aligned}
& v(t)=\int e^{2 t} d t=\frac{1}{2} e^{2 t}+c \\
& v(0)=\frac{1}{2}+c=3 \quad c=\frac{5}{2} \quad v(t)=\frac{1}{2} e^{2 t}+\frac{5}{2} \\
& s(t)=\int \frac{1}{2} e^{2 t}+\frac{5}{2} d t=\frac{1}{4} e^{2 t}+\frac{5}{2} t+c \\
& s(0)=\frac{1}{4}+c=2 \quad s(t)=\frac{1}{4} e^{2 t}+\frac{5}{2} t+\frac{7}{4} \\
& c=\frac{7}{4} \quad
\end{aligned}
$$

10. A rectangular shipping crate is to be constructed with a square base. The material for the two square ends costs $\$ 3$ per square foot and the material for the sides costs $\$ 2$ per square foot. What dimensions will minimize the cost of constructing the crate if it must have a volume of 12 cubic feet? What is the minimum cost? Let x be the length of the side of a square end, and y be the height of the crate. Be sure to check your answer.

$$
\begin{aligned}
V=x \cdot x \cdot y & =12 \\
x^{2} y & =12 \\
y & =\frac{12}{x^{2}}
\end{aligned}
$$

$$
=6 x^{2}+\frac{96}{x}
$$

$$
\begin{gathered}
M^{\prime}=12 x-\frac{96}{x^{2}} \\
12 x^{3}=96 \\
x=2
\end{gathered}
$$

$$
\begin{gathered}
y=\frac{12}{2^{2}}=3 \\
\begin{array}{r}
x=2 \\
y=3
\end{array} \\
.4+\frac{.96}{2}=\$ 72
\end{gathered}
$$

11. A sporting goods store has started selling a new fitness tracker. In one of its local districts, an average of 50 trackers sell per month at the regular price of $\$ 40$. The financial manager has observed that when the tracker is put on sale, an average of 5 more will sell for each $\$ 2$ price decrease. If each unit costs the store $\$ 24$ and there are fixed costs of $\$ 5600$, how many should be sold in a given month to maximize profit? What price should they charge? Assume that the demand function $p(x)$ is linear.

$$
\begin{aligned}
& \quad(50,40) \\
& m=\frac{\Delta p}{\Delta x}=-\frac{2}{5} \quad \text { Cost }=24 x+5600 \\
& y=m x+b \\
& 40=-\frac{2}{5}(50)+b \\
& b=60
\end{aligned} \quad P(x)=-\frac{2}{5} x+600
$$

12. Consider the area given by $\int_{0}^{4} \frac{x}{x^{2}+1} d x$.
(a) Approximate the area using a Riemann sum with $n=4$ and using the left endpoint of each subinterval to find the height of each rectangle.
(b) Approximate the same area with $n=4$ using midpoints to approxinmate the integral.
(c) Find the exact value of the integral.

$$
\begin{aligned}
& x_{1}=0 \quad x_{4}=3 \\
& x_{2}=1 \\
& x_{3}=2
\end{aligned}
$$

$\Delta x=\frac{4-0}{4}=1$
a)

$$
\begin{aligned}
\sum_{n=1}^{4} \frac{x_{i}}{x_{1}^{2}+1} \Delta x & =\left(\frac{0}{0^{2+1}}+\frac{1}{171}+\frac{2}{4+1}+\frac{3}{9+1}\right) \Delta x \\
& =0+\frac{1}{2}+\frac{2}{5}+\frac{3}{10} \\
& =1,2
\end{aligned}
$$

b)

$$
\begin{aligned}
& \sum_{n=1}^{4} \frac{x_{i}}{x_{i}^{2}+1} \Delta x=\frac{\frac{1}{2}}{\frac{1}{4}+1}+\frac{\frac{3}{2}}{\frac{9}{4}+1}+\frac{\frac{5}{2}}{\frac{25}{4}+1}+\frac{\frac{7}{2}}{\frac{49}{4}+1} \\
&=\frac{2}{5}+\frac{6}{13}+\frac{10}{29}+\frac{14}{53} \\
& x_{2}=\frac{1}{2} \\
& x_{2}=\frac{3}{2} \approx 1,4705
\end{aligned}
$$

C)

$$
\begin{aligned}
& \int_{0}^{x_{4}=2_{2}^{2}} \frac{x}{x^{2}+1} d x=\frac{1}{2} \int_{x=0}^{x=4} \frac{d v}{v}=\left.\frac{1}{2} \ln |u|\right|_{x=0} ^{x=4} \\
& v=x^{2}+1 \\
& d v=2 x d x \\
&=\left.\frac{1}{2} \ln \left|x^{2}+1\right|\right|_{0} ^{4} \\
& \frac{1}{2} d v=x d x=\frac{1}{2} \ln |17|-\frac{1}{2} \ln |1| \\
&=\frac{1}{2} \ln |17|
\end{aligned}
$$

13. Find the following definite integral by finding the area of an appropriate geometric figure. Be sure to sketch the regions involved.

$$
\int_{-2}^{0} 3 d x+\int_{0}^{3} f(x) d x \text { with } f(x)= \begin{cases}3 & x \leq 0 \\ \sqrt{9-x^{2}} & 0<x \leq 3\end{cases}
$$

$$
\begin{aligned}
& =3 \cdot 2+\frac{1}{4} \pi(3)^{2} \\
& =6+\frac{9 \pi}{4}
\end{aligned}
$$

14. Find the area of the region bounded by $f(x)=|x-1|+x$ and the x-axis on $[-1,3]$. Be sure to rewrite the function without absolute value bars, then sketch.

$$
\begin{aligned}
f(x) & = \begin{cases}x-1+x & x-1>0 \\
-x+1+x & x-1<0\end{cases} \\
& = \begin{cases}2 x-1 & x>1 \\
1 & x<1\end{cases} \\
\int_{-1}^{1} 1 d x+\int_{1}^{3} 2 x-1 d x & =\left.x\right|_{-1} ^{1}+x^{2}-\left.x\right|_{1} ^{3} \\
& =1-(-1)+(9-3)-\left(1^{2}-1\right) \\
& =2 r 6 \\
& =8
\end{aligned}
$$

15. (a) Sketch the graph of the region bounded by the function

$$
f(x)=\left\{\begin{array}{ll}
x+1 & x \leq 0 \\
e^{x / 2} & x>0
\end{array} \text { and the } x \text {-axis from } x=-1 \text { to } x=2\right.
$$

(b) Find the area of the region described in part (a) by evaluating two separate integrals.

$$
\begin{aligned}
A & =\int_{-1}^{0} x+1 d x+\int_{0}^{2} e^{\frac{x}{2}} \\
& =\frac{x^{2}}{2}+\left.x\right|_{-1} ^{0}+\left.2 e^{\frac{x}{2}}\right|_{0} ^{2} \\
& =0-\left(\frac{1}{2}-1\right)+2 e-2 \\
& =\frac{1}{2}+2 e-2 \\
& =2 e-\frac{3}{2}
\end{aligned}
$$

16. Find the values of a and b so that $f(x)$ will be continuous for all x if

$$
f(x)=\left\{\begin{array}{ll}
x-a & x<3 \\
2 & x=3 \\
\frac{x^{2}}{3}+b & x>3
\end{array} .\right. \text { Then find the area of the region bounded by }
$$

$f(x)$ and the x-axis on the interval $[1,4]$.

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{-}} f(x)=f(3)=2 \\
& \lim _{x \rightarrow 3^{-}} x-a=2 \\
& 3-a=2 \\
& x=1 \\
& \lim _{x \rightarrow 3^{+}} \frac{x^{2}}{3}+b=f(3)=2 \quad f(x)=\left\{\begin{array}{cc}
x-1 & x<3 \\
\frac{x^{2}}{3}-1 & x \geq 3
\end{array}\right. \\
& \frac{3^{2}}{3}+b=2 \\
& \quad \frac{b=-1}{3}=\int_{1}^{3} x-1 d x+\int_{3}^{4} \frac{x^{2}}{3}-1 d x \\
& = \\
& =\frac{x^{2}}{2}-x l_{1}^{3}+\frac{x^{3}}{9}-x 1_{3}^{4} \\
& \\
& =\frac{46}{9}
\end{aligned}
$$

