The Final exam covers Lectures 1 — 34



MAC 2233: Exam 1 Review
Unit 1 Exam Review covers Lectures 1 — 14
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5. Let f(x ) u —3 and g(z) = g + 1. Find the functions (f o g)(z)
and (go f)(x). Include domams ). £0O '2
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7. Sketch the graph of f(z) =3 — 2z — 22 by using a formula to find the vertex.
Show all mtercepts Confirm your work by writing your function in standard
form f(x) = a(x — h)* + k by completing the square, and using translations to

graph
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8. Sketch the graph of f(z) =2 — /1 — . Starting with y = Vv, list each trans-
lation used to graph f(x).

y=- o +2
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9. Use the definition of absolute value to write the function g(x) = x|z| as a piece-
wise defined function. Then sketch its graph.
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10. Find the inverse of f(z) = v/4 — z . Be sure to include domain.
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11. Find the inverse of one-to-one function f(x) = 3 Use that inverse function
x

to find the range of f(z). Then find the horizontal_asymptote of f(x) if possible.
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13. Find the solution set of each of the following equations:
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14. Find the inverse of f(z) = e*™3 — 4. Sketch the graph of f and f~! on the same
axes. Include at least one point and any asymptotes of each function.
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(a) Find if possible: f(—4), f(—=2), f(0), f(2), f(e+1).
&‘3 (b) Sketch the graph of y = f(z). (c) Use your graph to evaluate the following
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(a) domain of f L"’Vo )" 2\\) LL, U()\) LU( 'bQ)
(b) all intercepts (express as ordered pairs)
()

)

all vertical and horizontal asymptotes

function.
(e) Use your graph to find lim f(z).
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17. There is a linear relationship between temperature in degrees Celsius C' and
degrees Fahrenheit F. Water freezes at 0°C' (32°F) and boils at 100°C' (212°F).
Write the model expressing C' as function of F'. What is the temperature in
degrees Fahrenheit if the temperature is 30°C'? What does the slope of the line
tell you?
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18. The demand and supply flnctions for a given product are given by
p = D(q) =60—2¢? and p = S(q) = ¢*>+9¢+30 where ¢ is quantity in thousands
and p is the unit price. Find the equilibrium quantity and price.

How many items will the supplier provide if the unit price of the product is $407
What will be the demand for the product when the unit price is $407 What
should happen to the price of the product?
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19. A financial manager at Target has made the following observations about a
certain product in one of its districts: an average of 250 units will sell in a
month when the price is $15, but an average of 50 more will sell if the price is
reduced by $1. Assuming the demand function is linear,

(a) Express p as a function of z.

(b) Find the revenue function R(z). Find the production level x that will max-
imize revenue. What is the maximum revenue?

(c) If fixed costs are $800 and the marginal cost is $10 per item, find each value
of x at which the company will break even. What is the profit for those
values?

(d) Find the profit function P(x). What price should the manager charge to
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20. A farmer plans to spend $6000 to enclose a rectangular field with two kinds of
fencing. Two opposite sides will require heavy-duty fencing that costs $3 per
linear foot, while the other two sides can be constructed with standard fencing
that costs $2 per foot. Express the area of the field, A, as a function of x, the
length of a side that requires the more expensive fence. Find the value of x that
will maximize the area of the field, and the length of a side that uses standard
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21. Rewrite the expression as the sum, difference, or multiple of logarithms:
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22. Mr. Jones invested $2500 at 5.5% compounded continuously. How long will it
take his account to grow to $4000 if he adds no new funds to the account?

HooD = 250000 > L= P, ~ 30 yaus
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6w much money must be invested now at 3 1/4% compounded quarterly in
order to have $6000 in three years?
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24. Todine - 131 has a half-life of 8 days. Suppose some hay was contaminated with
ten times the allowable amount of I-131. How long must the hay be stored before
it can be fed to cattle? Hint: the hay must have qne-tept® of its current amount
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25. Use the following graph of a function f(x) to evaluate the limits and function
value if possible. If the limit does not exist, write ”dne”.
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prop T—a ,3/9(1-) —1 x—)af( ) 3
lim g(z) = 9.
r—a

iy

X0 3[a0-  [a- A8

£ a0 _ () gl



2

T+ v+ 2 ;_1

27. Evaluate (a) lim and (b) lim

r—2 x—Q'
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6 — 2x . . : : :
= | | Hint: rewrite as a piecewise function

29. Sketch the graph of f(x)

without absolute value bars.

Use the graph to find: (a) lim f(z), (b) lim f(z), and (c) lim f(z).
x—3~ x—3t z—3
Now find those limits algebraically without using the graph.
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31 If f(x) = = 2_

1) xl_i)l_noo flz) 2) xEI:Ii—loo f(z) 3) Each asymptote of the graph of f(x).

5 find if possible:
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32. The Intermediate Value Theorem guarantees that the function

1
f(z) = 23 — = — 5z + 3 has a zero on which of the following intervals?
x

a) [—1,1] b) [1, 3] c) [3, 5] d) [-3, 2]
— .9 L
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33. Consider a function f(x) which has the following graph.

)

) f(x) has a jump discontinuity at x = 0] . )
(c¢) f(x) has an infinite discontinuity at z = i :
(d; f(x) has a removable discontinuity at z ==2 ,3 :

to make f(z) continuous?
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MAC 2233: Unit 2 Exam Review
Lectures 15 — 24

1. Use the definition of derivative to evaluate f'(z) if f(x) = v/2x — 1. Check your
answer using a derivative rule. A\-/—:
Km £ £ (i 20w -V — x| T - YA
h20 n hs0
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2. (a) Use the definition of derivative to find f'(x) if f(x) = ST Check
a’/‘ J—
your answer using the Quotient Rule.
(b) Find each interval over which f(z) is differentiable.
(c) Write the equation of the tangent line to f(x) = at r = —1.

el &C)(::;:I ] 2_;% +(@Ged-D( 2x-1)
B A (a(x:l‘@ ~() (;zx-—ﬂ

Stim QA= 1D(x4h) = X (ax+2h 1)
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3. Indicate whether each of the following statements is true or false.
(a) If f is continuous at z = a, then f is differentiable at = = a. M& “Q(')QZ \x\
< (b) If f is not continuous at & = a, then f is not differentiable at x = a. &t A=A
true <

c¢) If f has a vertical tangent line at x = a, then the graph of f’(x) has a vertical
asymptote at x = a.

4. If an object is projected upward from the roof of a 200 foot building at 64 ft/sec,
its height A in feet above the ground after ¢ seconds is given by

h(t) = 200 + 64t — 16¢*. Find the following;:

(a) The average velocity of the object from time ¢ = 0 until it reaches its maxi-
mum height (hint: consider the graph of the function)

(b) The instantaneous velocity of the object at time ¢ = 1 second using the limit

Q/) definition.
reocwes paxXimowm \/\eig\M ot \(ertex
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2 = X~
yTHx-A wm=k

5. Find each value at which f(z) = %

FeO= *-x-2 =h
K-x— =0
(x-2)(x+2) =0
A=3-2

— 2z is parallel to the line

o] R,

l
= xz" IX*+ (
6. Find the value of a so that the tangent line to y = 2* — 2\/z + 1 is perpendicular
to the line ay 4+ 2x = 2 when = = 4.
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P = 23K w3 ax X -2«
- 3 4—&3_ ,_h?/z -21X

7. If f(z) = (2% — 22)(2y/z + 1), find f'(z) two ways: rewriting f(x) and
differentiating, and using the Product Rule.

pix)= Txdz +3x*-uxo g
prodquet yole

RE c_,»(a._ L}(ZW*D + (}3"2&) (x"i)

8. Find each value of x at which f(z) = (1 — 2)°(5x + 2)* has a horizontal tangent
line.

§'00= -5 0O E 2 -x Ksna) L)
) (\-X)“(Sx»rzf( sx+2 -2(1-%) )

5 (10)*(oxi) (BXt2 -1 FEK)
-5(1- ):*(gw_)(qwz)
x=1,"5-%

"

i n

9. Let f(z) = (Ve -1

. Find f/(z) and write as a single fraction. Write the
equation of the tangent line to f(z) at x = 4.

) = (F-DUIF-D _x-2x+) \~?.x'l‘+x"
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£3) =4

6\ 3
10. Write the equation of the tangent line to f(x) = (az — —) at x = 3.
x

MeO= 3(A —%}%\ + %3 ¥(3)- 5@"% )2(\ +%>

N = WMk L 3(,0[%) =5
\ = 5(3\\«5 >p= -4
=Sk -l
Ver T

11. Find each value of z at which the function f(z) = has

T
(a) horizontal and (b) vertical tangent lines.

Write the equation of each of those lines.
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12. Suppose that f(4) = —1, g(4) =2, f(—4) =1, g(—4) =3, f'(4) = -2,
g'(4) =12, f'(—4) =6, and ¢'(—1) = —2.

1.2

Find: (a) H'(4) if h(x) = g(f(2)) and (b) H'(4) if H(z) = \[af(2) + 5
) h'()=q (F) PO
W)= g (o) ML) = g't0(2) = -1(2) =&

b) HO)= + (% 36O+ L5 )-3 (£69 + ®HG) * %)

H (%)= % U ) + %—_)_\7' CORSUIOETY

)
L (s (D)= LA (D) BT
2 (1) +8)  ( w2 22

13. Sketch a possible graph of the derivative of the function y = f(x) shown below.
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14. Find the derivative:

(a) f(z) =321 (b) f(z) = log, (2* — )
o)

22X~ \ 27("‘\
=W 2T B H(O =
2 W) (A20)

15. Find the slope of the tangent line to the curve given by /3 — y—e*t¥ = 1+Inx

L ( \'iit-(l,—;);.éi A4 | W-%:%m
EA _,( dx> e (HS}A "X

L) 3-m) - e ey £ | ==

-l’\‘b—wb -+ m) =
3 -gm-\ - =) \
')f 16. Find the first three derivatives of
f(z) =In(2® +1).
ISa .
)= 2K - 2 (210, 221 'zl
(KEN2 (1)
|
LS (X) = ~Ax (ﬁﬂ){—l(l —’Lx’*)(&y*l-)(n\,
o -
(x40

=g (k2 -Ax (272X M
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LR = ln(2x-0) =Sn (A+2)

20 — 6
17. Find each value of x at which f(z) = In ( ’
%+ 3

line. O: 7(2_+-5 __X’l_"-ax

) = L __\ A
'\\' (ﬁ') "\—')Z (7&;_\_-5> D.: 3 .1.37(

) has a horizontal tangent

LXo
o= —- & K-l
*-3  xZ+3 ~| ia "ot v Hne dovuin
= X%*+3 - (X- o> +
0= x*3-{ 633\2”% k o Worzontal *QV\QS@H’ W&

18. Find f'(z) if f(z) =In Brri)e

‘?(?Q = l"‘@&% ’f"g\n le+2x) - 2\ 3 X+\)
3 _ 33
3(L¥3r) 33X\

19. U LU+3hx DPM\ find the sl f th li f
se Logarithmic Differentiation to find the slope of the tangent line to
V¥ at o = 4. w (K&
e o) (3504
) a4 41
Wy = n Xﬁ' l("( '
- ;(_72\ \V\X - L\—\V\L\ *_'8
Lody oL 1R
N 3% = fiﬁ 2l F x
A AnX ffL)
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20. Find each value at which f(x) =

minimum.
Find the absolute extrema of f(x) on [—2,1].

5173

el 22 has a relative maximum or

x
4

/3r — 2

21. Let f(x) = "

(a) Find f'(z) and write as a single fraction.
(b) Find the equation of each horizontal and vertical tangent line of f(x).

(¢) Find each z-value at which f(z) has a
critical number. /

d-)——Fm'dmchueme Vatresof JFL

Py = 53X 23 () x - Gx 25
g Js
= 5.  _ (3x2)
(Bx-2)73 —
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22. The cost function for a product is
C(z) = 1.252% + 25z + 8000.

(a) Suppose the company decides to increase production by 4 units per day
when the current daily production level is 50 units. Find the rate of change
of cost with respect to time.

(b) If C(z) = 1.252% + 25z + 8000, find each interval on which average cost
is increasing and decreasing. For what production level x is average cost
&‘_’) minimized?

%Y;’:L\ %% = ? wh en X;%

dC _ 5. ax dx
=30 s Y o

- S+ 25(8) = BOO TS FHoCO [ day
.25 K2 +25A + 8OO _ | 9Sx +25 + ‘50@0

decreosing Own (p 80)
NCreos\na Sor >0
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23. The demand function for a certain product is given by
p(z) = —0.02x + 400, 0 < x < 20,000, where p is the unit price when x items
are sold. The cost function for the product is

C(x) = 100z + 300, 000.

(a) Find the marginal profit of the product when = = 2000.
(b) Find the actual profit from the sale of the 2001st item. Compare to your
answer in (a).

(c) Find each interval on which the profit function P(z) = —0.02z% + 300z —
300, 000 is increasing and decreasing. Remember that 0 < x < 20,000. How
many items should be sold to maximize profit? At what price?

Q) Provit = ceNenve - Ces
PX) = x P - )
= % (-.o0% #1100) - (100 K ¥200ER2)

= =, 02X% +HODX - |1ob X —200,500 0

- -, 02%X% +360K -30p 00O
/
P = - oux +200
F/(2C>00> = - 0ok (2006 ) ¥2300 = 220

b) APz PQoo)) - Poe)= 214,98

C) B&=-.04% +300 K=T150O0
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