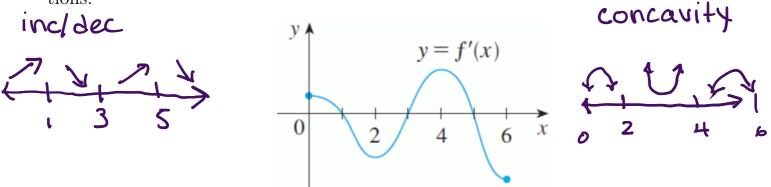
MAC 2233 — Fall 2019 — EXAM 3A


Section #	Name	
UF ID #	Signature	

YOU MUST SHOW ALL WORK TO RECEIVE FULL CREDIT.

1. Two people start moving from the same point. Person A travels south at 3 m/s and Person B travels west at 4 m/s. At what rate is the distance between the two people increasing two seconds later?

$$\frac{B}{C} = \frac{A}{C} = \frac{A}$$

2. The graph of the **derivative**, f'(x), of f(x) is shown below. Answer the following questions.

(a) On what interval is f increasing?

(0,1)U(3,5)

(b) On what interval is f decreasing?

 $(1,3) \cup (4,6),$

- (c) List the critical points of f
 - X = 1, 3, 5
- (d) At what value(s) of x does f have a local max?

X=1,5

(e) At what value(s) of x does f have a local min?

x=3

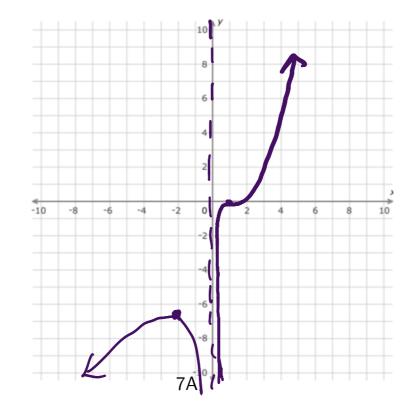
(f) On what interval is f concave up?

(2, 4)

(g) On what interval is f concave down?

 $(0,2) \cup (4,6)$

(h) What value(s) of x does f have a point of inflection?


$$X = 2, 4$$

3. Consider the function
$$y = f(x)$$
 where

$$f(x) = \frac{(x-1)^3}{x^2} \quad f'(x) = \frac{(x-1)^2(x+2)}{x^3} \quad f''(x) = \frac{6(x-1)}{x^4}$$
(a) What is the domain of f? What are the vertical and horizontal asymptotes of f?
domain $(-t\sigma, 0) \cup (0, 0^{\circ})$ no norizontal asymptote of f?
vertical asymptote $x = 0$
(b) List the critical point(s) of f. On what interval is f increasing? decreasing?
Critical points increasing $(-\infty, -2) \cup (0, 1) \cup (1, 1^{\circ})$,
 $x=-2$ $(-2, -2^{\circ})$ decreasing $(2, 0)$
(c) List the point(s) of inflection. On what interval is f concave up? concave down?
inflection point $x=1$ $(1,0)$ concave yp $(1,1^{\circ})$
(d) At what point(s) does f have a local maximum? local minimum?

local max (-2, -27)no local min

(e) Sketch the graph of f.

