ANSWERS

1. horizontal tangent lines at $x=-1, x=0$ and $x=2$
relative maximum at $x=0$; relative minima at $x=-1$ and $x=2$
absolute maximum on $[-2,1]: \frac{8}{3}=f(-2)$ and
absolute minimum on $[-2,1]:-\frac{13}{12}=f(1)$
2. critical number: $x=4$ only relative maximum value is $f(4)=-\frac{3}{16}$, no relative minima
3. (a) $f^{\prime}(x)=\frac{2-2 x}{x^{2}(3 x-2)^{2 / 3}}$
(b) HTL: $y=1$, VTL: $x=\frac{2}{3}$
(c) $x=1$ and $x=\frac{2}{3}(f(x)$ has a vertical asymptote at $x=0$ so not a critical number)
(d) local maximum: $f(1)=1$, no local minima
4. (a) $\frac{d C}{d t}=600$ so cost is increasing by $\$ 600$ per day
(b) Average cost $\bar{C}(x)=\frac{C(x)}{x}$ is decreasing on interval $(0,80)$ and increasing for $x>80$ so average cost is minimized when 80 items are produced.
5. $P(x)=-0.02 x^{2}+300 x-300,000$
(a) When $x=2000, M P=220$ so the profit from the 2001 st item is approximately $\$ 220$.
(b) $\Delta P=P(2001)-P(2000)=219.98$
(c) increasing: $(0,7500)$ and decreasing: $(7500,20,000)$

Profit is maximized when 7500 items are sold at a unit price of $\$ 250$.
6. $f^{\prime}(x)=\frac{10 x-10}{3 x^{1 / 3}}$
relative maximum is $f(0)=0$; relative minimum is $f(1)=-3$ on $[-8,0]$: absolute maximum is $f(0)=0$ and absolute minimum is $f(-8)=-84$
7. maximum: $1=f(0)$, minimum: $\frac{1}{e^{16}}=f(2)$
8. maximum: $1=f(1)$, minimum: $4-8 \ln 2=f(2)$
9. (a) $v(t)=3 t^{2}-12 t+9$
(b) $t=1$ and $t=3$ seconds
(c) $(0,1)$ and $(3,6)$
(d) $1 \mathrm{~cm} / \mathrm{sec}$
(e) $a(t)=6 t-12 ; a(3 / 2)=-3 \mathrm{~cm} / \mathrm{sec}^{2}$
(f) $(1):(1,2)$ and $(3,6) \quad(2):(0,1)$ and $(2,3)$
10. concave up: $\left(-\infty,-\frac{1}{\sqrt{2}}\right) \cup\left(\frac{1}{\sqrt{2}}, \infty\right)$, concave down: $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ inflection points: $\left(-\frac{1}{\sqrt{2}}, \sqrt{e}\right)$ and $\left(\frac{1}{\sqrt{2}}, \sqrt{e}\right)$
11. $(-\infty,-3)$ and $(-1,0)$
12. $(2, \infty)$; inflection point is $\left(2, \ln 2+\frac{1}{2}\right)$
13. maximum at $x=1$, minimum at $x=-2$ and $x=5$
14. $f(x)$ is increasing on interval $(-1,4)$ and decreasing on interval $(\infty,-1)$ and $(4, \infty)$
relative maximum at $x=4$ and relative minimum at $x=-1$
concave up: $(-\infty, 0)$ and $(1,4)$, concave down: $(0,1)$ and $(4, \infty)$
inflection points at $x=0, x=1$ and $x=4$
15. relative maxima: $x=-1$, relative minimum: $x=1$ inflection points at $x= \pm \frac{1}{\sqrt{2}}, x=0$

16. (a) after 20 minutes; population is $P(20)=4200$ viruses
(b) $t=10$ minutes
17. Dimensions: $x=550 \mathrm{ft}, y=\frac{2200}{3} \mathrm{ft}$
18. 45 items at a price of $\$ 42$ per unit
19. $R(x)$ is increasing on $(0,400)$; maximum revenue is $R(400)=\$ 3200$.
Point of diminishing returns: $(200,1600)$ is an inflection point of the graph of $R(x)$.
20.

21.

22. graph has a relative minimum at $x=-1$ and a relative maximum at $x=3$; inflection points at $x=0, x=1$ and $x=2$
23. (a) $3^{(2 x-1)^{2}}(\ln 3)(8 x-4)$
(b) $\frac{2 x-1}{(\ln 4)\left(x^{2}-x\right)}$
24. A
25. A
26. A
27. E
28. C
29. A
30. C
31. E
32. B or D
33. C
34. B
35. B
36. (a) 0.3225 (b) 0.3
37. (a) revenue is decreasing by about $\$ 150$

$$
\Delta R=R(1590)-R(1600)=-\$ 150.47
$$

(b) revenue is increasing by $\$ 450$ per week
(c) sell 3600 items at a price of $\$ 15$
38. $f(x)=\frac{2(1+\ln x)}{x}$
39. (a) $\frac{3}{2} \ln 12$
(b) $x+4 \sqrt{x}+\ln |x|+C$
(c) $\frac{13}{3}$
(d) $-\frac{e^{\frac{1}{2 x-1}}}{2}+C$
(e) $\frac{112}{9}$
(f) $\frac{e^{12}-1}{6}$
(g) $\left.\frac{2}{3}(x-1)^{3 / 2}+2 \sqrt{x-1}\right]_{2}^{5}=\frac{20}{3}$
40. $R(t)=250 e^{0.06 t}-240$
41. $R(x)=100 x+0.2 x^{2}-0.1 x^{3}$;
$p(x)=100+0.2 x-0.1 x^{2}$
42. $v(t)=-\frac{2}{t+1}+2$ and $s(t)=-2 \ln |t+1|+2 t$; after 2 seconds the object has moved $4-2 \ln 3$ or $4-\ln 9 \mathrm{~cm}$
43. Let $R(t)$ be the retail price of a Toyota t years after its introduction. Then $R(t)=\sqrt{3 t^{2}+4}+22$ and $R(2)=26$ so price is $\$ 26,000$.
44. $s(t)=\frac{e^{2 t}}{4}+\frac{5}{2} t+\frac{7}{4}$
45. Minimize Cost $=6 x^{2}+8 x y$ if volume $x^{2} y=12$:
$x=2, y=3$ and minimum cost is $\$ 72$
46. 45 items at a price of $\$ 42$ per unit

