## Exam 3 Review

## ANSWERS

1. (a) $f^{\prime}(x)=2 \cdot 3^{2 x-1}(\ln 3)$
(b) $f^{\prime}(x)=\frac{2 x-1}{\left(x^{2}-x\right)(\ln 4)}$
2. $m=-\frac{1}{e}$
3. $m=-1$
4. $f^{\prime}(x)=\frac{2 x}{x^{2}+1} ; f^{\prime \prime}(x)=\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}} ; f^{\prime \prime \prime}(x)=\frac{4 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}$
5. $f^{\prime}(x)=\frac{1}{x-3}-\frac{x}{x^{2}+3}=0$ when $x=-1$ but -1 is not in the domain of $f(x)$ so the graph has no horizontal tangent lines.
6. $1+\frac{1}{6+3 x}-\frac{6}{3 x+1}$
7. $8+4 \ln 4$
8. horizontal tangent lines at $x=-1, x=0$ and $x=2$
relative maximum at $x=0$; relative minima at $x=-1$ and $x=2$
absolute maximum on $[-2,1]: \frac{8}{3}=f(-2)$ and
absolute minimum on $[-2,1]:-\frac{13}{12}=f(1)$
9. critical number: $x=4$ only relative maximum value is $f(4)=-\frac{3}{16}$, no relative minima
10. (a) $f^{\prime}(x)=\frac{2-2 x}{x^{2}(3 x-2)^{2 / 3}}$
(b) HTL: $y=1$, VTL: $x=\frac{2}{3}$
(c) $x=1$ and $x=\frac{2}{3}(f(x)$ has a vertical asymptote at $x=0$ so not a critical number)
(d) local maximum: $f(1)=1$, no local minima
11. (a) $\frac{d C}{d t}=600$ so cost is increasing by $\$ 600$ per day
(b) Average cost $\bar{C}(x)=\frac{C(x)}{x}$ is decreasing on interval $(0,80)$ and increasing for $x>80$ so average cost is minimized when 80 items are produced.
12. $P(x)=-0.02 x^{2}+300 x-300,000$
(a) When $x=2000, M P=220$ so the profit from the 2001 st item is approximately $\$ 220$.
(b) $\Delta P=P(2001)-P(2000)=219.98$
(c) increasing: $(0,7500)$ and decreasing: $(7500,20,000)$

Profit is maximized when 7500 items are sold at a unit price of $\$ 250$.
13. $f^{\prime}(x)=\frac{10 x-10}{3 x^{1 / 3}}$
relative maximum is $f(0)=0$; relative minimum is $f(1)=-3$
on $[-8,0]$ : absolute maximum is $f(0)=0$ and absolute minimum is $f(-8)=-84$
14. maximum: $1=f(0)$, minimum: $\frac{1}{e^{16}}=f(2)$
15. maximum: $1=f(1)$, minimum: $4-8 \ln 2=f(2)$
16. (a) $v(t)=3 t^{2}-12 t+9$
(b) $t=1$ and $t=3$ seconds
(c) $(0,1)$ and $(3,6)$
(d) $1 \mathrm{~cm} / \mathrm{sec}$
(e) $a(t)=6 t-12 ; a(3 / 2)=-3 \mathrm{~cm} / \mathrm{sec}^{2}$
(f) $(1):(1,2)$ and $(3,6) \quad(2):(0,1)$ and $(2,3)$
17. concave up: $\left(-\infty,-\frac{1}{\sqrt{2}}\right) \cup\left(\frac{1}{\sqrt{2}}, \infty\right)$, concave down: $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ inflection points: $\left(-\frac{1}{\sqrt{2}}, \sqrt{e}\right)$ and $\left(\frac{1}{\sqrt{2}}, \sqrt{e}\right)$
18. $(-\infty,-3)$ and $(-1,0)$
19. $(2, \infty)$; inflection point is $\left(2, \ln 2+\frac{1}{2}\right)$
20. maximum at $x=1$, minimum at $x=-2$ and $x=5$
21. $f(x)$ is increasing on interval $(-1,4)$ and decreasing on interval $(\infty,-1)$ and $(4, \infty)$
relative maximum at $x=4$ and relative minimum at $x=-1$
concave up: $(-\infty, 0)$ and $(1,4)$, concave down: $(0,1)$ and $(4, \infty)$
inflection points at $x=0, x=1$ and $x=4$
22. relative maxima: $x=-1$, relative minimum: $x=1$
inflection points at $x= \pm \frac{1}{\sqrt{2}}, x=0$

23. (a) after 20 minutes; population is $P(20)=4200$ viruses
(b) $t=10$ minutes
24. Dimensions: $x=550 \mathrm{ft}, y=\frac{2200}{3} \mathrm{ft}$
25. 45 items at a price of $\$ 42$ per unit
26. $R(x)$ is increasing on $(0,400)$; maximum revenue is $R(400)=\$ 3200$.
Point of diminishing returns: $(200,1600)$ is an inflection point of the graph of $R(x)$.
27.

28.

29. graph has a relative minimum at $x=-1$ and a relative maximum at $x=3$; inflection points at $x=0, x=1$ and $x=2$

