Exam 3 Review

1. Find the derivative:
(a) $f(x)=3^{2 x-1}$
(b) $f(x)=\log _{4}\left(x^{2}-x\right)$
2. Find the slope of the tangent line to
$f(x)=\ln |2-\ln x|$ at $x=e$.
3. Find the slope of the tangent line to the curve given by $\sqrt{3 x-y}-e^{x+y}=1+\ln x$ at $(1,-1)$.
4. Find the first three derivatives of $f(x)=\ln \left(x^{2}+1\right)$.
5. Find each value of x at which $f(x)=\ln \left(\frac{2 x-6}{\sqrt{x^{2}+3}}\right)$ has a horizontal tangent line.
6. Find $f^{\prime}(x)$ if $f(x)=\ln \frac{e^{x-3} \sqrt[3]{6+3 x}}{(3 x+1)^{2}}$.
7. Use Logarithmic Differentiation to find the slope of the tangent line to $f(x)=$ $x^{\sqrt{x}}$ at $x=4$.
8. Find each value at which $f(x)=\frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}$ has a relative maximum or minimum.
Find the absolute extrema of $f(x)$ on $[-2,1]$.
9. Find all critical numbers and relative extrema
of $g(x)=\frac{1}{2 \sqrt{x}}-\frac{1}{x^{2}}$.
10. Let $f(x)=\frac{\sqrt[3]{3 x-2}}{x}$.
(a) Find $f^{\prime}(x)$ and write as a single fraction.
(b) Find the equation of each horizontal and vertical tangent line of $f(x)$.
(c) Find each x-value at which $f(x)$ has a
critical number.
(d) Find the relative extreme values of $f(x)$.
11. The cost function for a product is
$C(x)=1.25 x^{2}+25 x+8000$.
(a) Suppose the company decides to increase production by 4 units per day when the current daily production level is 50 units. Find the rate of change of cost with respect to time.
(b) If $C(x)=1.25 x^{2}+25 x+8000$, find each interval on which average cost is increasing and decreasing. For what production level x is average cost minimized?
12. The demand function for a certain product is given by
$p(x)=-0.02 x+400,0 \leq x \leq 20,000$, where p is the unit price when x items are sold. The cost function for the product is
$C(x)=100 x+300,000$.
(a) Find the marginal profit of the product when $x=2000$.
(b) Find the actual profit from the sale of the 2001st item. Compare to your answer in (a).
(c) Find each interval on which the profit function $P(x)=-0.02 x^{2}+300 x-$ 300,000 is increasing and decreasing. Remember that $0 \leq x \leq 20,000$. How many items should be sold to maximize profit? At what price?
13. Find all relative extrema of
$f(x)=2 x^{5 / 3}-5 x^{2 / 3}$. Then find the absolute extrema of $f(x)$ on $[-8,0]$. Compare the two methods.
14. Find the absolute maximum and minimum
values of $f(x)=e^{x^{3}-12 x}$ on $[0,3]$.
15. Find the maximum and minimum values of $f(x)=x^{2}-8 \ln x$ on $[1, e]$.
16. The position (in centimeters) of a particle moving in a straight line at time t (in seconds) is given by $s(t)=t^{3}-6 t^{2}+9 t$ for $0 \leq t \leq 6$.
(a) Find the velocity function $v(t)$.
(b) At what time(s) is the particle at rest?
(c) For what time interval(s) over the first six seconds is the particle traveling in a positive direction?
(d) Find the average velocity from $t=0$ to $t=4$ seconds.
(e) What is the acceleration of the particle after $3 / 2$ second? Include units in your answer.
(f) Find each interval on which the particle is (1) speeding up and (2) slowing down
17. Find each interval on which $f(x)=e^{1-x^{2}}$ is concave up and down, and find each inflection point of the graph of f.
18. Find all intervals on which the graph of
$f(x)=\frac{x^{4}}{4}+2 x^{3}+\frac{9}{2} x^{2}+8$ is both decreasing
and concave up.
19. Find each interval on which $f(x)=\ln x+\frac{1}{x}$ is both increasing and concave down. Find each inflection point.
20. Suppose that $f(x)$ has horizontal tangent lines at $x=-2, x=1$ and $x=5$. If $f^{\prime \prime}(x)>0$ on intervals $(-\infty, 0)$ and $(2, \infty)$ and $f^{\prime \prime}(x)<0$ on the interval $(0,2)$, find the x - values at which $f(x)$ has relative extrema. Assume that f and f^{\prime} are continuous on $(-\infty, \infty)$ and use the Second Derivative test.
21. Given the graph of the derivative $f^{\prime}(x)$, find each interval on which the function $f(x)$ is increasing and decreasing, and find the x-coordinate of each point at which $f(x)$ has a local maximum or minimum value. Find each interval on which $f(x)$ is concave up and down, and the x-coordinate of each inflection point. Assume that the domain of $f(x)$ is $(-\infty, \infty)$.

22. Suppose that $f^{\prime}(x)=15 x^{4}-15 x^{2}$. Find each x-value at which the function $f(x)$ has relative extrema. Find the x-coordinate of each inflection point. Sketch a possible graph of $f(x)$ if $f(x)$ passes through the origin.
23. A drug that stimulates reproduction is introduced into a population of viruses. That population can be modeled by the function $P(t)=30 t^{2}-t^{3}+200,0 \leq t \leq$ 30 , where $P(t)$ is the population after t minutes.
(a) At what time does the population reach its maximum? What is the maximum population?
(b) At what time is the rate of growth of the population maximized?
24. A farmer wishes to fence an area next to his barn. He needs a wire fence that costs $\$ 1$ per linear foot in front of the barn and and wooden fencing that costs $\$ 2$ per foot on the other sides. Find the lengths x (sides perpendicular to the barn) and y (side across from the barn) so that he can enclose the maximum area if his budget for materials is $\$ 4400$.
25. Frye's Electronics has started selling a new video game. In one of its Dallas stores, an average of 50 games sell per month at the regular price of $\$ 40$. The manager of the department has observed that when the video game is put on sale, an average of 5 more games will sell for each $\$ 2$ price decrease. If each video game costs the store $\$ 24$ and there are fixed costs of $\$ 5600$, how many should be sold in a given month to maximize profit? What price should they charge? Assume that the demand function $p(x)$ is linear.
26. The revenue $R(x)$ generated from sales of a certain product is related to the amount of money spent on advertising according to the model $R(x)=\frac{1}{10,000}\left(600 x^{2}-\right.$ $\left.x^{3}\right), 0 \leq x \leq 600$, where x and $R(x)$ are measured in thousands of dollars. Find each interval over which $R(x)$ is increasing. For the interval on which $R(x)$ is increasing, find the point of diminishing returns. Why is it significant?
27. Consider the function $f(x)=x^{1 / 3}(x+3)$ and its first two derivatives,
$f^{\prime}(x)=\frac{4 x+3}{3 x^{2 / 3}}$ and $f^{\prime \prime}(x)=\frac{4 x-6}{9 x^{5 / 3}}$.
Find all intercepts, asymptotes, relative extrema and inflection points. Sketch the graph of $f(x)$.
28. Sketch the graph of $f(x)=\frac{x^{3}}{1-x^{2}}$ if $f^{\prime}(x)=\frac{x^{2}\left(3-x^{2}\right)}{\left(1-x^{2}\right)^{2}}$ and $f^{\prime \prime}(x)=\frac{2 x\left(x^{2}+3\right)}{\left(1-x^{2}\right)^{3}}$.
29. Given the graph of the derivative $f^{\prime}(x)$, find a possible graph of the function $f(x)$. Assume that $f(-1)=-2, f(0)=0, f(1)=1, f(2)=3$ and $f(3)=5$, and that $f(x)$ is a continuous function. Be sure to find all extrema and inflection points.

