MAC 2233: Unit 2 Exam Review

Lectures 15-24

1. Use the definition of derivative to evaluate $f^{\prime}(x)$ if $f(x)=\sqrt{2 x-1}$. Check your answer using a derivative rule.
2. (a) Use the definition of derivative to find $f^{\prime}(x)$ if $f(x)=\frac{x}{2 x-1}$. Check your answer using the Quotient Rule.
(b) Find each interval over which $f(x)$ is differentiable.
(c) Write the equation of the tangent line to $f(x)=\frac{x}{2 x-1}$ at $x=-1$.
3. Indicate whether each of the following statements is true or false.
(a) If f is continuous at $x=a$, then f is differentiable at $x=a$.
(b) If f is not continuous at $x=a$, then f is not differentiable at $x=a$.
(c) If f has a vertical tangent line at $x=a$, then the graph of $f^{\prime}(x)$ has a vertical asymptote at $x=a$.
4. If an object is projected upward from the roof of a 200 foot building at $64 \mathrm{ft} / \mathrm{sec}$, its height h in feet above the ground after t seconds is given by $h(t)=200+64 t-16 t^{2}$. Find the following:
(a) The average velocity of the object from time $t=0$ until it reaches its maximum height (hint: consider the graph of the function)
(b) The instantaneous velocity of the object at time $t=1$ second using the limit definition.
5. Find each value at which $f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2 x$ is parallel to the line $2 y-8 x+9=0$.
6. Find the value of a so that the tangent line to $y=x^{2}-2 \sqrt{x}+1$ is perpendicular to the line $a y+2 x=2$ when $x=4$.
7. If $f(x)=\left(x^{3}-2 x\right)(2 \sqrt{x}+1)$, find $f^{\prime}(x)$ two ways: rewriting $f(x)$ and differentiating, and using the Product Rule.
8. Find each value of x at which $f(x)=(1-x)^{5}(5 x+2)^{4}$ has a horizontal tangent line.
9. Let $f(x)=\frac{(\sqrt{x}-1)^{2}}{x}$. Find $f^{\prime}(x)$ and write as a single fraction. Write the equation of the tangent line to $f(x)$ at $x=4$.
10. Write the equation of the tangent line to $f(x)=\left(x-\frac{6}{x}\right)^{3}$ at $x=3$.
11. Find each value of x at which the function $f(x)=\frac{\sqrt[3]{6 x+1}}{x}$ has
(a) horizontal and (b) vertical tangent lines. Write the equation of each of those lines.
12. Suppose that $f(4)=-1, g(4)=2, f(-4)=1, g(-4)=3, f^{\prime}(4)=-2$, $g^{\prime}(4)=12, f^{\prime}(-4)=6$, and $g^{\prime}(-1)=-2$.
Find: (a) $h^{\prime}(4)$ if $h(x)=g(f(x))$ and (b) $H^{\prime}(4)$ if $H(x)=\sqrt{x f(x)+\frac{x^{2}}{2}}$.
13. Sketch a possible graph of the derivative of the function $y=f(x)$ shown below.

14. Find the derivative:
(a) $f(x)=3^{2 x-1}$
(b) $f(x)=\log _{4}\left(x^{2}-x\right)$
15. Find the slope of the tangent line to the curve given by $\sqrt{3 x-y}-e^{x+y}=1+\ln x$ at $(1,-1)$.
16. Find the first three derivatives of $f(x)=\ln \left(x^{2}+1\right)$.
17. Find each value of x at which $f(x)=\ln \left(\frac{2 x-6}{\sqrt{x^{2}+3}}\right)$ has a horizontal tangent line.
18. Find $f^{\prime}(x)$ if $f(x)=\ln \frac{e^{x-3} \sqrt[3]{6+3 x}}{(3 x+1)^{2}}$.
19. Use Logarithmic Differentiation to find the slope of the tangent line to $f(x)=$ $x^{\sqrt{x}}$ at $x=4$.
20. Find each value at which $f(x)=\frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}$ has a relative maximum or minimum.
Find the absolute extrema of $f(x)$ on $[-2,1]$.
21. Let $f(x)=\frac{\sqrt[3]{3 x-2}}{x}$.
(a) Find $f^{\prime}(x)$ and write as a single fraction.
(b) Find the equation of each horizontal and vertical tangent line of $f(x)$.
(c) Find each x-value at which $f(x)$ has a critical number.
(d) Find the relative extreme values of $f(x)$.
22. The cost function for a product is $C(x)=1.25 x^{2}+25 x+8000$.
(a) Suppose the company decides to increase production by 4 units per day when the current daily production level is 50 units. Find the rate of change of cost with respect to time.
(b) If $C(x)=1.25 x^{2}+25 x+8000$, find each interval on which average cost is increasing and decreasing. For what production level x is average cost minimized?
23. The demand function for a certain product is given by $p(x)=-0.02 x+400,0 \leq x \leq 20,000$, where p is the unit price when x items are sold. The cost function for the product is $C(x)=100 x+300,000$.
(a) Find the marginal profit of the product when $x=2000$.
(b) Find the actual profit from the sale of the 2001st item. Compare to your answer in (a).
(c) Find each interval on which the profit function $P(x)=-0.02 x^{2}+300 x-$ 300,000 is increasing and decreasing. Remember that $0 \leq x \leq 20,000$. How many items should be sold to maximize profit? At what price?
