1. Use the definition of derivative to evaluate $f^{\prime}(x)$ if $f(x)=\sqrt{2 x-1}$. Check your

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{\sqrt{2(x+h)-1}-\sqrt{2 x-1}}{h} \cdot \frac{\sqrt{2(x+h)-1}+\sqrt{2 x-1}}{\sqrt{2(x+h)-1}+\sqrt{2 x-1}} \\
& =\lim _{h \rightarrow 0} \frac{2(x+h)-1-(2 x-1)}{h(\sqrt{2(x+h)-1}+\sqrt{2 x-1})} \\
& =\lim _{h \rightarrow 0} \frac{2 x+2 h-1-2 x+1}{h(\sqrt{2 x+2 h-1}+\sqrt{2 x-1})} \\
& =\lim _{h \rightarrow 0} \frac{2 x}{(\sqrt{2 x+2 h-1+\sqrt{2 x}-1})}=\frac{2}{\sqrt{2 x-1}+\sqrt{2 x-1}}=\frac{1}{\sqrt{2 x-1}}
\end{aligned}
$$

2. (a) Use the definition of derivative to find $f^{\prime}(x)$ if $f(x)=\frac{x}{2 x-1}$. Check your answer using the Quotient Rule.
(b) Find each interval over which $f(x)$ is differentiable.
(c) Write the equation of the tangent line to $f(x)=\frac{x}{2 x-1}$ at $x=-1$.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{\frac{x+h}{2(x+h)-1}-\frac{x}{2 x-1}}{h} \frac{(2(x+h)-1)(2 x-1)}{(2(x+h)-1)(2 x-1)} \\
& =\lim _{h \rightarrow 0} \frac{(2 x-1)(x+h)-x(2 x+2 h-1)}{h(2 x+2 h-1)(2 x-1)} \\
& =\lim _{h \rightarrow 0} \frac{2 x^{2}+2 x h-x-h-2 x^{2}-2 x h+x}{h(2 x+2 h-1)(2 x-1)} \\
& =\lim _{h \rightarrow 0} k \frac{-k}{k(2 x+2 h-1)(2 x-1)}=-\frac{1}{(2 x-1)^{2}}
\end{aligned}
$$

b_{p}
$f(x)=\frac{x}{2 x-1}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1(2 x-1)-x(2)}{(2 x-1)^{2}} \\
& =\frac{2 x-1-2 x}{(2 x-1)^{2}} \\
& =\frac{-1}{(2 x-1)^{2}}
\end{aligned}
$$

C)

$$
\begin{aligned}
& x \neq \frac{1}{2} \\
& \left(-\infty, \frac{1}{2}\right),\left(\frac{1}{2}, \infty\right)
\end{aligned}
$$

3. Indicate whether each of the following statements is true or false.
(a) If f is continuous at $x=a$, then f is differentiable at $x=a$. False
$f(x)=|x|$
(b) If f is not continuous at $x=a$, then f is not differentiable at $x=a$. $a+x=a$
(c) If f has a vertical tangent line at $x=a$, then the graph of $f^{\prime}(x)$ has a vertical asymptote at $x=a$.
4. If an object is projected upward from the roof of a 200 foot building at $64 \mathrm{ft} / \mathrm{sec}$, its height h in feet above the ground after t seconds is given by
$h(t)=200+64 t-16 t^{2}$. Find the following:
(a) The average velocity of the object from time $t=0$ until it reaches its maximum height (hint: consider the graph of the function)
(b) The instantaneous velocity of the object at time $t=1$ second using the limit definition.
a)
reaches maximum height at vertex

$$
t=-\frac{b}{2 a}=\frac{-64}{2(-16)}=2
$$

average velocity from $t=0$ to $t=2$

$$
\begin{aligned}
\frac{h(2)-h(0)}{2-0} & =\frac{200+64(2)-16(2)^{2}-\left(200+64(0)-16 \cdot 0^{2}\right)}{2} \\
& -128-64
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{128-64}{2} \\
& =32 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

b)

$$
\begin{aligned}
& h^{\prime}(t)=64-32 t \\
& h^{\prime}(1)=64-32=32
\end{aligned}
$$

$$
\text { or } \lim _{t \rightarrow 1} \frac{h(t)-h(1)}{t-1}
$$

$$
\begin{aligned}
2 y & =8 x-9 \\
y & =4 x-\frac{9}{2} \quad m=4
\end{aligned}
$$

5. Find each value at which $f(x)=\frac{x^{3}}{3}-\frac{x^{2}}{2}-2 x$ is parallel to the line
$2 y-8 x+9=0$.

$$
\begin{array}{r}
f^{\prime}(x)=x^{2}-x-2=4 \\
x^{2}-x-6=0 \\
(x-3)(x+2)=0 \\
x=3,-2
\end{array}
$$

$$
y=x^{2}-2 x^{\frac{1}{2}}+1
$$

6. Find the value of a so that the tangent line to $y=x^{2}-2 \sqrt{x}+1$ is perpendicular to the line $a y+2 x=2$ when $x=4$.

$$
\begin{aligned}
& y^{\prime}=2 x-2\left(\frac{1}{2}\right) x^{-\frac{1}{2}}=2 x-x^{-\frac{1}{2}} \\
& \\
& a y+2 x=2 \\
& a y=-2 x+2 \\
& y=-\frac{2}{a} x+\frac{2}{a} \quad m_{\perp}=\frac{a}{2}
\end{aligned}
$$

$$
\begin{aligned}
\left.y^{\prime}\right|_{4}=2(4)-\frac{1}{\sqrt{4}}=8-\frac{1}{2} & =\frac{15}{2} \\
\frac{a}{2} & =\frac{15}{2} \\
a & =15
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =2 x^{3} \sqrt{x}+x^{3}-4 x \sqrt{x}-2 x \\
& =2 x^{7 / 2}+x^{3}-4 x^{3 / 2}-2 x
\end{aligned}
$$

7. If $f(x)=\left(x^{3}-2 x\right)(2 \sqrt{x}+1)$, find $f^{\prime}(x)$ two ways: rewriting $f(x)$ and differentiating, and using the Product Rule.

$$
f^{\prime}(x)=7 x^{5 / 2}+3 x^{2}-6 x^{6 / 2}-2
$$

product rule

$$
\begin{aligned}
& \text { product rule } \\
& f^{\prime}(x)=\left(3 x^{2}-2\right)(2 \sqrt{x}+1)+\left(x^{3}-2 x\right)\left(x^{-\frac{1}{2}}\right)
\end{aligned}
$$

8. Find each value of x at which $f(x)=(1-x)^{5}(5 x+2)^{4}$ has a horizontal tangent line.

$$
\begin{aligned}
f^{\prime}(x)= & -5(1-x)^{4}(5 x+2)^{4}+4(1-\lambda)^{5}(5 x+2)^{3}(5) \\
= & -5(1-x)^{4}(5 x+2)^{3}(5 x+2-4(1-x)) \\
= & -5(1-x)^{4}(5 x+2)^{3}(5 x+2-4+4 x) \\
0= & -5(1-x)^{4}(5 x+2)(9 x+2) \\
& x=1,-\frac{2}{5},-\frac{2}{9}
\end{aligned}
$$

9. Let $f(x)=\frac{(\sqrt{x}-1)^{2}}{x}$. Find $f^{\prime}(x)$ and write as a single fraction. Write the equation of the tangent line to $f(x)$ at $x=4$.

$$
\begin{aligned}
& f(x)=\frac{(\sqrt{x}-1)(\sqrt{x}-1)}{x}=\frac{x-2 \sqrt{x}+1}{x}=1-2 x^{-\frac{1}{2}}+x^{-1} \\
& f^{\prime}(x)=x^{-3 / 2}-x^{-2} \\
&=\frac{1}{x^{3 / 2}}-\frac{1}{x^{2}} \\
&=\frac{x^{1 / 2}}{x^{2}}-\frac{1}{x^{2}}=\frac{\sqrt{x}-1}{x^{2}(4)=\frac{\sqrt{4}-1}{4^{2}}=\frac{1}{16}} \\
& f(4)=\frac{(\sqrt{4}-1)^{2}}{4}=\frac{1}{4} \\
& \frac{1}{4}=\frac{1}{16}(4)+b b=0 \\
& y=\frac{1}{16} x
\end{aligned}
$$

$$
f(3)=1
$$

10. Write the equation of the tangent line to $f(x)=\left(x-\frac{6}{x}\right)^{3}$ at $x=3$.

$$
\begin{gathered}
f^{\prime}(x)=3\left(x-\frac{6}{x}\right)^{2}\left(1+\frac{6}{x^{2}}\right) \quad f^{\prime}(3)=3\left(3-\frac{6}{3}\right)^{2}\left(1+\frac{6}{a}\right) \\
y=m x+b \\
1=5(3)+b \Rightarrow b=-14 \\
y=5 x-14
\end{gathered}
$$

11. Find each value of x at which the function $f(x)=\frac{\sqrt[3]{6 x+1}}{x}$ has
(a) horizontal and (b) vertical tangent lines.

Write the equation of each of those lines.

$$
\begin{aligned}
f(x)=\frac{(6 x+1)^{1 / 3}}{x} f^{\prime}(x) & =\frac{\frac{1}{3}(6 x+1)^{-\frac{2}{3}} 6^{1 /(6 x+1)^{1 / 3}}}{x^{2}} \\
& =\frac{\frac{2 x}{(6 x+1)^{2 / 3}}-(6 x+1)^{1 / 3}}{x^{2}} \\
& =\frac{2 x-(6 x+1)}{(6 x+1)^{2 / 3} x^{2}}=\frac{-4 x-1}{(6 x+1)^{2 / 3} x^{2}}
\end{aligned}
$$

horizontal tangent line at $x=-\frac{1}{4} \quad f\left(\frac{1}{4}\right)=2^{5 / 3}$

$$
y=2^{5 / 3}
$$

vertical tangent line $x=\frac{-1}{6}, 0$
12. Suppose that $f(4)=-1, g(4)=2, f(-4)=1, g(-4)=3, f^{\prime}(4)=-2$, $g^{\prime}(4)=12, f^{\prime}(-4)=6$, and $g^{\prime}(-1)=-2$.
Find: (a) $h^{\prime}(4)$ if $h(x)=g(f(x))$ and (b) $H^{\prime}(4)$ if $H(x)=\sqrt{x f(x)+\frac{x^{2}}{2}}$.
a) $h^{\prime}(x)=g^{\prime}(f(x)) f^{\prime}(x)$

$$
h^{\prime}(4)=g^{\prime}(f(4)) f(4)=g^{\prime}(-1)(-2)=-2(-2)=4
$$

b) $H^{\prime}(x)=\frac{1}{2}\left(x f(x)+\frac{x^{2}}{2}\right)^{\frac{-1}{2}}\left(f(x)+x f^{\prime}(x)+x\right)$

$$
\begin{aligned}
H^{\prime}(4) & =\frac{1}{2}\left(4 f(4)+\frac{16}{2}\right)^{-\frac{1}{2}}\left(f(4)+4 f^{\prime}(4)+4\right) \\
& =\frac{1}{2} \frac{1}{(4(1)+8)^{1 / 2}}(-1+4(-2)+4)=\frac{1}{2} \cdot \frac{1}{2}(-5)=-\frac{5}{4}
\end{aligned}
$$

13. Sketch a possible graph of the derivative of the function $y=f(x)$ shown below.

(b) $f(x)=\log _{4}\left(x^{2}-x\right)$
a)

$$
f^{\prime}(x)=2 \ln (3) 3^{2 x-1}
$$

b) $f^{\prime}(x)=\frac{2 x-1}{\ln (4)\left(x^{2}-x\right)}$
15. Find the slope of the tangent line to the curve given by $\sqrt{3 x-y}-e^{x+y}=1+\ln x$

$$
\begin{aligned}
& \frac{1}{2}(3 x-y)^{-\frac{1}{2}}\left(3-\frac{d y}{d x}\right)-e^{x+1}\left(1+\frac{d y}{d x}\right)=\frac{1}{x} \\
& \frac{1}{2}(3-(-1))^{-\frac{1}{2}}(3-m)-e^{0}(1+m)=1 \\
& \frac{1}{4}(3-m)-(1+m)=1 \\
& \frac{3}{4}-\frac{1}{4} m-1-m=1 \\
& 16 . \text { Find the first three derivatives of } \\
& f(x)=\ln \left(x^{2}+1\right) \\
& f^{\prime}(x)=\frac{2 x}{x^{2}+1} \\
& f^{\prime \prime}(x)=\frac{2\left(x^{2}+1\right)-2 x(2 x)}{\left(x^{2}+1\right)^{2}}=-\frac{\frac{5}{4} m}{\left(x^{2}+1\right)^{2}} \\
& f^{(3)}\left(x^{\prime}\right)=\frac{-4 x^{\prime}\left(x^{2}+1\right)^{2}-2\left(2-2 x^{2}\right)\left(x^{2}+1\right)(2 x)}{\left(x^{2}+1\right)^{4}} \\
&=\frac{-4 x\left(x^{2}+1\right)-4 x\left(2-2 x^{2}\right)}{\left(x^{2}+1\right)^{3}}=\frac{4 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}
\end{aligned}
$$

$$
f(x)=\ln (2 x-6)-\frac{1}{2} \ln \left(x^{2}+3\right)
$$

17. Find each value of x at which $f(x)=\ln \left(\frac{2 x-6}{\sqrt{x^{2}+3}}\right)$ has a horizontal tangent

$$
\begin{aligned}
& f^{\prime}(x)=\frac{2}{2 x-6}-\frac{1}{2} \frac{2 x}{\left(x^{2}+3\right)} \\
& 0=\frac{1}{x-3}-\frac{x}{x^{2}+3} \\
& 0=x^{2}+3-(x-3) x
\end{aligned}
$$

$$
\left[\begin{array}{l}
0=x^{2}+3-x^{2}+3 x \\
0=3+3 x
\end{array}\right.
$$

$$
x=-1
$$

-1 is not in the domain of f no horizontal tangent lines

$$
\begin{aligned}
f(x) & =\ln e^{x-3}+\frac{1}{3} \ln (6+3 x)-2 \ln (3 x+1) \\
& =1+\frac{3}{3(6+3 x)}-\frac{2(3)}{3 x+1} \\
& =1+\frac{1}{6+3 x}-\frac{6}{3 x+1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 19. Use Logarithmic Differentiation to find the slope of the tangent line to } f(x)= \\
& y=x^{\sqrt{x}} \\
& \ln y=\ln x^{\sqrt{x}} \\
& =\sqrt{x} \ln x \\
& \frac{1}{y} \frac{d y}{d x}=\frac{1}{2} x^{-\frac{1}{2}} \ln x+\frac{\sqrt{x}}{x} \\
& =4 \ln 4+8 \\
& \frac{d y}{d x}=y\left(\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right) \\
& =x^{\sqrt{x}}\left(\frac{\ln x}{2 \sqrt{x}}+\frac{1}{\sqrt{x}}\right)
\end{aligned}
$$

20. Find each value at which $f(x)=\frac{x^{4}}{4}-\frac{x^{3}}{3}-x^{2}$ has a relative maximum or minimum.
Find the absolute extrema of $f(x)$ on $[-2,1]$.
21. Let $f(x)=\frac{\sqrt[3]{3 x-2}}{x}$.
(a) Find $f^{\prime}(x)$ and write as a single fraction.
(b) Find the equation of each horizontal and vertical tangent line of $f(x)$.
(c) Find each x-value at which $f(x)$ has a

$$
\begin{aligned}
f^{\prime}(x) & \left.=\frac{\frac{1}{3}(3 x-2)^{-\frac{2}{3}}(3) x-(3 x-2)^{\frac{1}{3}}}{x^{2}} \right\rvert\, \\
& =\frac{\frac{x}{(3 x-2)^{2 / 3}}-(3 x-2)^{1 / 3}}{x^{2}} \quad \begin{array}{l}
\text { horizontal tangent line } \\
\text { at } x=1 \quad f(1)=1 \quad y=1 \\
\text { vertical tangent line } x=2 / 3
\end{array} \\
& =\frac{x-(3 x-2)}{x^{2}(3 x-2)^{2 / 3}} \quad \begin{array}{l}
\text { critical numbers } \\
\text { at } x=1,2 / 3
\end{array} \\
& =\frac{-2 x+2}{x^{2}(3 x-2)^{2 / 3}} \quad
\end{aligned}
$$

22. The cost function for a product is
$C(x)=1.25 x^{2}+25 x+8000$.
(a) Suppose the company decides to increase production by 4 units per day when the current daily production level is 50 units. Find the rate of change of cost with respect to time.
(b) If $C(x)=1.25 x^{2}+25 x+8000$, find each interval on which average cost is increasing and decreasing. For what production level x is average cost
a) minimized?

$$
\begin{aligned}
& \frac{d x}{d t}=4 \quad \frac{d c}{d t}=? \text { when } x=50 \\
& \frac{d c}{d t}=\frac{5}{2} x \frac{d x}{d t}+25 \frac{d x}{d t} \\
& \frac{d c}{d t}=\frac{5}{2}(50)(4)+25(4)=500+100=\$ 600 / \text { day }
\end{aligned}
$$

b)

$$
\bar{c}(x)=\frac{1.25 x^{2}+25 x+8000}{x}=1.25 x+25+\frac{8000}{x}
$$

$$
\bar{C}^{\prime}(x)=1.25-\frac{8000}{x^{2}}=0
$$

$$
1.25 x^{2}=8000
$$

$$
x^{2}=6400
$$

$$
x=80
$$

decreasing on $(0,80)$
increasing for $x>80$

$$
p(2500)=-.02(7500)+400
$$

at $\$ 250$
23. The demand function for a certain product is given by $p(x)=-0.02 x+400,0 \leq x \leq 20,000$, where p is the unit price when x items are sold. The cost function for the product is $C(x)=100 x+300,000$.
(a) Find the marginal profit of the product when $x=2000$.
(b) Find the actual profit from the sale of the 2001st item. Compare to your answer in (a).
(c) Find each interval on which the profit function $P(x)=-0.02 x^{2}+300 x-$ 300,000 is increasing and decreasing. Remember that $0 \leq x \leq 20,000$. How many items should be sold to maximize profit? At what price?
a) profit $=$ revenue - cost

$$
\begin{aligned}
P(x) & =x P(x)-C(x) \\
& =x(-.02 x+400)-(100 x+300,000) \\
& =-.02 x^{2}+400 x-100 x-300,0000 \\
& =-.02 x^{2}+300 x-300,000 \\
P^{\prime}(x) & =-.04 x+300 \\
P^{\prime}(2000) & =-.04(2000)+300=220
\end{aligned}
$$

b) $\Delta P=P(2001)-P(2000)=219,98$
C) $0=-.04 x+300 \quad x=7500$

increasing $(0,7500)$ decreasing $(7500,20,000)$
Profit is maximized when 7500 are sold

