MAC 2233: Unit 2 Exam Review
Lectures 15 — 24

1. Use the definition of derivative to evaluate f'(z) if f(z) = v/2x — 1. Check your
answer using a derivative rule. A\-/-:
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2. (a) Use the definition of derivative to find f'(x) if f(x) = ST Check
a’/‘ J—
your answer using the Quotient Rule.
(b) Find each interval over which f(z) is differentiable.
(c) Write the equation of the tangent line to f(x) = at r = —1.
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3. Indicate whether each of the following statements is true or false.
(a) If f is continuous at z = a, then f is differentiable at = = a. M& “Q(')QZ \x\
< (b) If f is not continuous at = = a, then f is not differentiable at x = a. &t A=A
true <

c) If f has a vertical tangent line at x = a, then the graph of f’(x) has a vertical
asymptote at x = a.

4. If an object is projected upward from the roof of a 200 foot building at 64 ft/sec,
its height A in feet above the ground after ¢ seconds is given by

h(t) = 200 + 64t — 16¢*. Find the following;:

(a) The average velocity of the object from time ¢ = 0 until it reaches its maxi-
mum height (hint: consider the graph of the function)

(b) The instantaneous velocity of the object at time ¢ = 1 second using the limit

Q/) definition.
reocwes paxXimowm \/\eig\M ot \(ertex

--2 _-LQ_Li. = L
J(’ 2a = 2(-W)

ONexage \fe,\oc.'ll-y Yromm 5= o L=2
h(@) —h(o) 220 *Li(2) -1(2) - (2004 o) Abe0® )

2-0 2
128 ~ &Y

—

2
=39 Mlsec
DML
©) W= Ly -3k o &36,\

n (_\\ = &%-32 =32




2 = 8X—
yIHx-A wm=k

5. Find each value at which f(z) = %

FeO= *-x-2 =h
K-x— =0
(x-2)(x+2) =0
A=3-2

— 2z is parallel to the line
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6. Find the value of a so that the tangent line to y = 2* — 2\/z + 1 is perpendicular
to the line ay 4+ 2x = 2 when = = 4.
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7. If f(z) = (2 — 22)(2y/z + 1), find f'(z) two ways: rewriting f(x) and
differentiating, and using the Product Rule.
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8. Find each value of x at which f(z) = (1 — 2)°(5x + 2)* has a horizontal tangent
line.
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9. Let f(z) = (Ve -1

. Find f/(z) and write as a single fraction. Write the
equation of the tangent line to f(z) at x = 4.
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10. Write the equation of the tangent line to f(x) = (az — —) at x = 3.
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11. Find each value of z at which the function f(z) = has

T
(a) horizontal and (b) vertical tangent lines.

Write the equation of each of those lines.
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12. Suppose that f(4) = —1, g(4) =2, f(—4) =1, g(—4) =3, f'(4) = -2,
g'(4) =12, f'(—4) =6, and ¢'(—1) = —2.
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Find: (a) H'(4) if h(x) = g(f(2)) and (b) H'(4) if H(z) = \[af(2) + 5
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13. Sketch a possible graph of the derivative of the function y = f(x) shown below.
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14. Find the derivative:

(a) f(z) =321 (b) f(z) = log, (2* — x)
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15. Find the slope of the tangent line to the curve given by 1/3xz — y—e*t¥ = 1+Inx
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17. Find each value of x at which f(z) = In (
line.

.\1’ )= _z A\ AR
® Lxto Z (A=3)

I K
0= -4
-3 KF3
0= x*#3- (x-3)x
s " 3V/6 + 3
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19. Use Logarithmic Differentiation to find the slope of the tangent line to f
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20. Find each value at which f(x) =

minimum.
Find the absolute extrema of f(x) on [—2,1].

5173

e 22 has a relative maximum or

x
4

/3r — 2

21. Let f(x) = "

(a) Find f'(z) and write as a single fraction.
(b) Find the equation of each horizontal and vertical tangent line of f(x).

(¢) Find each z-value at which f(z) has a
critical number. /
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22. The cost function for a product is
C(z) = 1.252% + 25z + 8000.

(a) Suppose the company decides to increase production by 4 units per day
when the current daily production level is 50 units. Find the rate of change
of cost with respect to time.

(b) If C(x) = 1.252% + 25z + 8000, find each interval on which average cost
is increasing and decreasing. For what production level x is average cost
&‘_’) minimized?
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23. The demand function for a certain product is given by
p(z) = —0.02x + 400, 0 < x < 20,000, where p is the unit price when x items
are sold. The cost function for the product is

C(x) = 100z + 300, 000.

(a) Find the marginal profit of the product when = = 2000.
(b) Find the actual profit from the sale of the 2001st item. Compare to your
answer in (a).

(c) Find each interval on which the profit function P(z) = —0.02z% + 300z —
300, 000 is increasing and decreasing. Remember that 0 < x < 20,000. How
many items should be sold to maximize profit? At what price?
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