Solutions:

1. $f(x)= \begin{cases}-2 & x<3 \\ 2 & x>3\end{cases}$

(a) -2
(b) 2
(c) DNE
2. (a) 2
(b) $\frac{1}{2}$
(c) $+\infty$
(d) -1
$x=-1$: removable, $x=0$: removable, $x=1$: infinite
vertical asymptote: $x=1$, horizontal asymptote: $y=-1$
3. 4) 0
2) $-\frac{2}{3}$
3) $x=\ln \frac{1}{3} ; y=0$ and $y=-\frac{2}{3}$
4. B or D
5. (a) $(-\infty,-2) \cup 0) \cup(0,3) \cup(3,4) \cup(4, \infty)$
(b) 0
(c) 4
(d) 2,3
6. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{2 x+2 h-1}-\sqrt{2 x-1}}{h}=\frac{1}{\sqrt{2 x-1}}$
7. (a) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\frac{x+h}{2 x+2 h-1}-\frac{x}{2 x-1}}{h}=-\frac{1}{(2 x-1)^{2}}$
(b) $\left(-\infty, \frac{1}{2}\right),\left(\frac{1}{2}, \infty\right)$
(c) $y=-\frac{1}{9} x+\frac{2}{9}$
8. (a) False (consider $f(x)=|x|$ at $x=0$ for example)
(b) True
(c) True
9. (a) use one-sided limits to show $\lim _{x \rightarrow 0} f(x)=f(0)=2$
(b) $f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}$. Use one-sided limits to show that the limit does not exist, so f is not differentiable at $x=0$.
10. (a) 32 feet per second
(b) $I V=\lim _{t \rightarrow 1} \frac{h(t)-h(1)}{t-1}=32$ feet per second
11. $x=-2$ or $x=3$
12. $a=15$
13. $f^{\prime}(x)=7 x^{5 / 2}+3 x^{2}-6 \sqrt{x}-2$
14. $x=-\frac{2}{5}, \quad x=\frac{2}{9}, \quad x=1$
15. $f^{\prime}(x)=\frac{\sqrt{x}-1}{x^{2}} ; y=\frac{1}{16} x$
16. $y=5 x-14$
17. $f^{\prime}(x)=\frac{-4 x-1}{x^{2}(6 x+1)^{2 / 3}}$
(a) horizontal tangent line at $x=-\frac{1}{4}$; equation $y=\frac{4}{\sqrt[3]{2}}=2^{5 / 3}$
(b) vertical tangent line at $x=-\frac{1}{6}$; equation $x=0$
18. (a) $4 \quad$ (b) $-\frac{5}{4}$
19. Graph should cross x-axis at $x=-1,1$, have vertical asymptote at $x=2$, be negative (below the x-axis) on intervals $(-\infty,-1),(1,2)$, and be positive (above x-axis) on intervals $(-1,1),(2, \infty)$
20. (a) $f^{\prime}(x)=2 \cdot 3^{2 x-1}(\ln 3)$
(b) $f^{\prime}(x)=\frac{2 x-1}{\left(x^{2}-x\right)(\ln 4)}$
21. $m=-\frac{1}{e}$
22. $m=-1$
23. $f^{\prime}(x)=\frac{2 x}{x^{2}+1} ; f^{\prime \prime}(x)=\frac{2-2 x^{2}}{\left(x^{2}+1\right)^{2}} ; f^{\prime \prime \prime}(x)=\frac{4 x\left(x^{2}-3\right)}{\left(x^{2}+1\right)^{3}}$
24. $f^{\prime}(x)=\frac{1}{x-3}-\frac{x}{x^{2}+3}=0$ when $x=-1$ but -1 is not in the domain of $f(x)$ so the graph has no horizontal tangent lines.
25. $1+\frac{1}{6+3 x}-\frac{6}{3 x+1}$
26. $8+4 \ln 4$
27. horizontal tangent lines at $x=-1, x=0$ and $x=2$
relative maximum at $x=0$; relative minima at $x=-1$ and $x=2$
absolute maximum on $[-2,1]: \frac{8}{3}=f(-2)$ and
absolute minimum on $[-2,1]:-\frac{13}{12}=f(1)$
28. critical number: $x=4$ only relative maximum value is $f(4)=-\frac{3}{16}$, no relative minima
29. (a) $f^{\prime}(x)=\frac{2-2 x}{x^{2}(3 x-2)^{2 / 3}}$
(b) HTL: $y=1$, VTL: $x=\frac{2}{3}$
(c) $x=1$ and $x=\frac{2}{3}(f(x)$ has a vertical asymptote at $x=0$ so not a critical number)
(d) local maximum: $f(1)=1$, no local minima
30. (a) $\frac{d C}{d t}=600$ so cost is increasing by $\$ 600$ per day
(b) Average cost $\bar{C}(x)=\frac{C(x)}{x}$ is decreasing on interval $(0,80)$ and increasing for $x>80$ so average cost is minimized when 80 items are produced.
31. $P(x)=-0.02 x^{2}+300 x-300,000$
(a) When $x=2000, M P=220$ so the profit from the 2001 st item is approximately $\$ 220$.
(b) $\Delta P=P(2001)-P(2000)=219.98$
(c) increasing: $(0,7500)$ and decreasing: $(7500,20,000)$

Profit is maximized when 7500 items are sold at a unit price of $\$ 250$.
32. $f^{\prime}(x)=\frac{10 x-10}{3 x^{1 / 3}}$
relative maximum is $f(0)=0$; relative minimum is $f(1)=-3$
on $[-8,0]$: absolute maximum is $f(0)=0$ and absolute minimum is $f(-8)=-84$
33. maximum: $1=f(0)$, minimum: $\frac{1}{e^{16}}=f(2)$
34. maximum: $1=f(1)$, minimum: $4-8 \ln 2=f(2)$

