	VS A	VS B
1	D	D
2	С	D
3	D	С
4	D	В
5	В	С
6	A	D
7	С	В
8	A	В
9	D	В
10	D	В
11	D	D
12	A	D
13	В	A

MAC 2233 — Fall 2019 — EXAM 2B

Multiple Questions are worth 4 points each.

Use the graph of f(x) below to answer questions 1–3

- 4. If f(2) = 3 and f'(2) = -1, what is the equation of the line tangent to the graph of y = f(x) at x = 2.
 - A. y = -x + 2D. y = 3x + 2B. y = 5 - xE. y = 3 - xC. y = 3x - 1

5. Match the graph of f(x) with it's derivative f'(x)

6. Calculate the limit

B. 2
$$\lim_{x \to 4} \frac{-x^2 + 6x - 8}{x - 4}$$

D. 2 E. 4

7. Let

А.

2 DNE

$$f'(2) = 3 \qquad f(2) = 4 \qquad f(4) = -1 \qquad f'(4) = -4$$

$$g(4) = 2 \qquad g'(4) = 1 \qquad g(2) = -2 \qquad g'(2) = 5$$

Let $h(x) = (f \circ g)(2x)$. Find $h'(2)$
A. 2 B. 6 C. -8 D. 3 E. 0

- 8. Which of the following functions have a root between -1 and 2?
 - i. $f(x) = x^2 + 1$ ii. $g(x) = e^x - 1$ iii. $k(x) = x^2 + x + 2$ A. i only D. all of the above E. none of the above C. i and iii

9. Let

$$f'(2) = 3 \qquad f(2) = 4 \qquad f(4) = -1 \qquad f'(4) = -4 g(4) = 2 \qquad g'(4) = 1 \qquad g(2) = -2 \qquad g'(2) = 5$$

Let $p(x) = \frac{x^2 f(x)}{g(x)}$. Find $p'(2)$
A. 6 B. -34 C. -8 D. $\frac{5}{4}$ E. $-\frac{5}{4}$

10. What value of k will make f(x) continuous from $(-\infty, \infty)$?

$$f(x) = \begin{cases} 7x - 2 & x \le 1 \\ kx^2 & x > 1 \end{cases}$$

A. -2 B. 5 C. 0 D. 7 E. 0

11. What is the value of the following limit:
$$\lim_{x \to \infty} \frac{x^2 - 6x + 3}{x + 2x^2 + 7}$$
?
A. 1 B. 0 C. ∞ D. $\frac{1}{2}$ E. DNE

12. State the equations of all horizontal asymptotes for a function f(x) satisfying the following conditions.
f(0) = 0, lim_{x→∞} f(x) = 2, lim_{x→-∞} f(x) = ∞, lim_{x→3⁻} f(x) = -∞, lim_{x→3⁺} f(x) = ∞, lim_{x→-5} f(x) = -∞
A. x = 3 and x = -5
B. y = 3 and y = -5
C. x = 2 and y = 3
E. y = 0

13. Let f be the piecewise function defined below. Which of the following statements about f are true.

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

- I. $\lim_{x \to 2} f(x)$ exists
- II. f(x) is continuous at x = 2
- III. f(x) is differentiable at x = 2

B. I and II

C. I and III

- D. All of the Above
- E. None of the Above

MAC 2233 — Fall 2019 — EXAM 2B

Section $\#$	Name	
	_	

UF ID # _____ Signature _____

YOU MUST SHOW ALL WORK TO RECEIVE FULL CREDIT.

1. Let $f(x) = \sqrt{2+3x}$. Use the **limit definition of the derivative** to find f'(1). (NOTE: No credit will be given if another method is used.)

$$\lim_{h \to 0} \sqrt{\frac{2+3(x+h)}{h}} - \sqrt{\frac{2+3x}{x}} \cdot \frac{\sqrt{2+3x+3h} + \sqrt{2+3x}}{\sqrt{2+3x+3h} + \sqrt{2+3x}}$$

$$= \lim_{h \to 0} \frac{2+3x+3h - (x+3x)}{h(\sqrt{2+3x+3h} + \sqrt{2+3x})}$$

$$= \lim_{h \to 0} \frac{3h}{h(\sqrt{12+3x+3h} + \sqrt{2+3x})}$$

$$= \lim_{h \to 0} \frac{3}{\sqrt{2+3x+3h} + \sqrt{2+3x}}$$

$$= \frac{3}{\sqrt{2+3x}} = f'(x) \qquad f'(1) = \frac{3}{\sqrt{3}}$$

$$= \lim_{x \to 1} \frac{\sqrt{2+3x} - \sqrt{5}}{x-1} \cdot \frac{\sqrt{2+3x} + \sqrt{5}}{\sqrt{2+3x} + \sqrt{5}} = \lim_{x \to 1} \frac{3(x-t)}{(x-t)(\sqrt{2+3x} + \sqrt{5})}$$

$$= \lim_{x \to 1} \frac{3x-3}{(x-t)(\sqrt{2+3x} + \sqrt{5})}$$

2. Let
$$f(x) = \frac{x^2 + 3x - 1}{x - 2}$$

(a) Find $f'(x)$

$$f'(x) = \frac{(2x + 3)(x - 2) - (x^2 + 3x - 1)}{(x - 2)^2}$$

$$= \frac{2x^2 - 4x + 3x - 6 - x^2 - 3x + 1}{(x - 2)^2}$$

$$= \frac{x^2 - 4x - 5}{(x - 2)^2}$$

(b) Find the equation of the tangent line to
$$f(x)$$
 at $x = 3$
 $f'(3) = \frac{3^2 - H(3) - 5}{1} = -8$
 $f(3) = \frac{9 + 9 - 1}{1} = 17$

3. Let
$$f(x) = \sqrt{x^2 - 4x + 13}$$
.

(a) At which x values does f(x) have horizontal tangent lines?

$$f'(x) = \frac{1}{2}(x^{2}-4x+13)^{\frac{1}{2}}(2x-4)$$

$$0 = \frac{2x-4}{2(x^{2}-4x+13)^{\frac{1}{2}}} \qquad 2x = 4$$

$$\lambda = 2$$

(b) Write the equation of the horizontal tangent line(s).

$$f(2) = \sqrt{2^2 - 4(2) + 13} = 3$$
 $\gamma = 3$

4. Consider the function

$$f(x) = \frac{3x + x^2}{x^2 - 2x} = \frac{\chi (3 + \chi)}{\chi (\chi - 2)} = \frac{3 + \chi}{\chi - 2}$$

- (a) List each value of x at which f(x) is discontinuous, and describe each as removable, jump or infinite discontinuity.
- X=0 removable
- X=2 nonremovable (infinite)

(b) List all of the vertical and horizontal asymptotes. You **MUST** support your answers with limits.

 $\lim_{X \to \infty} \frac{3+x}{\lambda-2} = 1 \implies \text{horizontal asymptote y=1}$

$$\lim_{\substack{X \to 2^{-} \\ X \to 2^{-}}} \frac{3+X}{X-2} = \infty$$

$$\lim_{\substack{X \to 2^{+} \\ X \to 2^{+}}} \frac{3+X}{X-2} = \infty$$