MAC 2233: Exam 1 Review
Unit 1 Exam Review covers Lectures 1 — 14
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5. Let f(x ) ’ —3 and g(z) = g + 1. Find the functions (f o g)(z)
and (go f)(z). Include domams ). £0O '2
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Find = ( ) and its domain.
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7. Sketch the graph of f(z) = 3 — 2z — 22 by using a formula to find the vertex.
Show all mtercepts Confirm your work by writing your function in standard
form f(x) = a(x — h)* + k by completing the square, and using translations to

graph
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8. Sketch the graph of f(z) =2 — /1 — . Starting with y = Vv, list each trans-
lation used to graph f(x).
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9. Use the definition of absolute value to write the function g(x) = x|z| as a piece-
wise defined function. Then sketch its graph.
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10. Find the inverse of f(z) = v4 — z . Be sure to include domain.
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11. Find the inverse of one-to-one function f(x) = 5 Use that inverse function
x

to find the range of f(z). Then find the horizontal_asymptote of f(x) if possible.
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13. Find the solution set of each of the following equations:
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14. Find the inverse of f(z) = e**3 — 4. Sketch the graph of f and f~! on the same
axes. Include at least one point and any asymptotes of each function.
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(a) Find if possible: f(—4), f(—=2), f(0), f(2), f(e+1).
&‘3 (b) Sketch the graph of y = f(z). (c) Use your graph to evaluate the following
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(b) all intercepts (express as ordered pairs)
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all vertical and horizontal asymptotes

function.
(e) Use your graph to find lim f(z).
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17. There is a linear relationship between temperature in degrees Celsius C' and
degrees Fahrenheit F. Water freezes at 0°C' (32°F) and boils at 100°C' (212°F).
Write the model expressing C' as function of F'. What is the temperature in
degrees Fahrenheit if the temperature is 30°C'? What does the slope of the line
tell you?

('52.)()3) (,2“'71 IDDS
_ O0-loD -1 5
W= - o =
32-212 ~\g£ 1
- [LO
O:%B-z_) N A &

b =-1LO femparture increnses 5°C. as Farmwit
A Yemp ncreases by 4°

18. The demand and supply flnctions for a given product are given by
p = D(q) =60—2¢? and p = S(q) = ¢*+9¢+30 where ¢ is quantity in thousands
and p is the unit price. Find the equilibrium quantity and price.

How many items will the supplier provide if the unit price of the product is $407
What will be the demand for the product when the unit price is $407 What
should happen to the price of the product?
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19. A financial manager at Target has made the following observations about a
certain product in one of its districts: an average of 250 units will sell in a
month when the price is $15, but an average of 50 more will sell if the price is
reduced by $1. Assuming the demand function is linear,

(a) Express p as a function of z.

(b) Find the revenue function R(z). Find the production level x that will max-
imize revenue. What is the maximum revenue?

(c) If fixed costs are $800 and the marginal cost is $10 per item, find each value
of x at which the company will break even. What is the profit for those
values?

(d) Find the profit function P(x). What price should the manager charge to
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20. A farmer plans to spend $6000 to enclose a rectangular field with two kinds of
fencing. Two opposite sides will require heavy-duty fencing that costs $3 per
linear foot, while the other two sides can be constructed with standard fencing
that costs $2 per foot. Express the area of the field, A, as a function of x, the
length of a side that requires the more expensive fence. Find the value of x that
will maximize the area of the field, and the length of a side that uses standard
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21. Rewrite the expression as the sum, difference, or multiple of logarithms:
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22. Mr. Jones invested $2500 at 5.5% compounded continuously. How long will it
take his account to grow to $4000 if he adds no new funds to the account?
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6w much money must be invested now at 3 1/4% compounded quarterly in
order to have $6000 in three years?
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24. Todine - 131 has a half-life of 8 days. Suppose some hay was contaminated with
ten times the allowable amount of I-131. How long must the hay be stored before
it can be fed to cattle? Hint: the hay must have qne-tept® of its current amount
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25. Use the following graph of a function f(x) to evaluate the limits and function
value if possible. If the limit does not exist, write ”dne”.
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27. Evaluate (a) lim and (b) lim
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29. Sketch the graph of f(x)

without absolute value bars.

Use the graph to find: (a) lim f(z), (b) lim f(z), and (c) lim f(z).
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Now find those limits algebraically without using the graph.
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and d) xEIPOO f(x). Find each vertical and horizontal asymptote of f(x).
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31 If f(x) = p= 2_

1) xl_i)l_noo flz) 2) :I:EI:Ii—loo f(z) 3) Each asymptote of the graph of f(x).

5 find if possible:
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32. The Intermediate Value Theorem guarantees that the function

1
f(z) = 23 — = — 5z + 3 has a zero on which of the following intervals?
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33. Consider a function f(x) which has the following graph.

)

) f(x) has a jump discontinuity at x = o . )
(¢) f(x) has an infinite discontinuity at z = i :
(d; f(x) has a removable discontinuity at x == ,3 :

to make f(z) continuous?
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