MAC 2233: Exam 1 Review
Unit 1 Exam Review covers Lectures 1 - 14

$$
\begin{aligned}
& \text { 1. Solve for } x: 2(x+1)^{-1 / 3 / 3 / 3 / 3}-(x+1)^{2 / 3} x^{-2 / 3}=0 \\
& x^{2 / 3}(x+1)^{1 / 3}\left(\frac{2 x^{\frac{4}{3}}}{(x+1)^{1 / 3}}-\frac{(x+1)^{2 / 3}}{x^{2 / 3}}\right)=0 \cdot x^{2 / 3} \cdot(x+1)^{1 / 3} \\
& 2 x^{4 / 3} x^{2 / 3}-(x+1)^{2 / 3}(x+1)^{1 / 3}=0 \quad x=1,-\frac{1}{2} \\
& 2 x^{2}-(x+1)=0 \\
& 2 x^{2}-x-1=(2 x+1)(x-1) \frac{=0}{\sqrt[3 x]{\sqrt{x^{2}+4}}-\sqrt{x^{2}+4}}
\end{aligned}
$$

2. Perform the operation and simplify the expression: $\frac{\sqrt{x^{2}+4}-\sqrt{x^{2}+4}}{2 \sqrt{x}}$

$$
\begin{aligned}
& \frac{\frac{3 x}{\sqrt{x^{2}+4}}-\sqrt{x^{2}+4}}{2 \sqrt{x^{2}+4}} \\
& \text { - } \frac{\sqrt{x^{2}+4}}{\sqrt{x^{2}+4}}=\frac{3 x-\left(x^{2}+4\right)}{2\left(x^{2}+4\right)} \\
& =\frac{3 x-x^{2}-4}{2\left(x^{2}+4\right)} \\
& \text { 3. Solve the inequality: } \frac{x+4}{x-1} \leq 2 \\
& \frac{x+4}{x-1}-2 \leq 0 \\
& \frac{x+4}{x-1}-\frac{2(x-1)}{x-1} \leq 0 \\
& \frac{x+4-2 x+2}{x-1} \leq 0 \\
& \frac{-x+6}{x-1} \leq 0 \\
& \text { critical numbers } \\
& x=6 \text {, } 1
\end{aligned}
$$

4. Find and simplify $\frac{f(x+h)-f(x)}{h}$ for
a) $f(x)=2 x^{2}-x-3$ and b) $f(x)=\frac{x}{x+4}$.
a)

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{2(x+h)^{2}-(x+h)-3-\left(2 x^{2}-x-3\right)}{h} \\
& =\frac{2\left(x^{2}+2 x h+h^{2}\right)-x-h-3-2 x^{2}+x+3}{h} \\
& =\frac{2 x^{2}+4 x h+2 h^{2}-x-h-3-2 x^{2}+x+3}{h} \\
& =\frac{4 x h+2 h^{2}-h}{h} \\
& =\frac{h(4 x+2 h-1)}{y} \\
& =4 x+2 h-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } f(x)=\frac{x}{x+4} \\
& \frac{f(x+h)-f(x)}{h}=\frac{\frac{x+h}{x+h+4}-\frac{x}{x+4}}{h} \cdot \frac{(x+4)(x+h+4)}{(x+4)(x+h+4)} \\
& =\frac{(x+h)(x+4)-x(x+h+4)}{h(x+4)(x+h+4)} \\
& =\frac{x^{2}+4 x+h x+h-x^{2}-x h-4 x}{h(x+4)(x+h+4)} \\
& =\frac{4 k}{h(x+4)(x+h+4)} \\
& =\frac{4}{(x+4)(x+h+4)}
\end{aligned}
$$

domain of $f(-\infty, 2) \cup(2, \infty)$

$$
g(-\infty, 0) \cup(0, \infty)
$$

5. Let $f(x)=\frac{x}{x-2}$ and $g(x)=\frac{2}{x}+1$. Find the functions $(f \circ g)(x)$
and $(g \circ f)(x)$. Include domains. $\quad x \neq 0,2$
6. Sketch the graph of $f(x)=3-2 x-x^{2}$ by using a formula to find the vertex. Show all intercepts. Confirm your work by writing your function in standard form $f(x)=a(x-h)^{2}+k$ by completing the square, and using translations to

$$
x=\frac{-b}{2 a} \stackrel{\text { graph. }}{=} \frac{-(-2)}{2(-1)}=-1
$$

$$
f(-1)^{2 a}=3-2(-1)-(-1)^{2}=3+2-1=4 \quad(-1,4)
$$

$$
f(x)=3-\left(x^{2}+2 x\right)
$$

$$
=3-\left(x^{2}+2 x+1\right)+1
$$

$$
=4-(x+1)^{2}
$$

$$
\begin{aligned}
& \left(f \circ g(x):\left(f(g(x))=\frac{\frac{2}{x}+1}{\frac{2}{x}+1-2} \cdot \frac{x}{x}=\frac{2+x}{2-x}\right. \text { domain }\right. \\
& (-\infty, 0) \cup(0,2) \cup(2, \infty) \\
& \begin{array}{r}
(g \circ f)(x)=g(f(x))=\frac{2}{\frac{x}{x-2}}+1=\frac{2(x-2)}{x}+1=\frac{2 x+4+x}{x}=\frac{3 x+4}{x} \\
\text { domain }(\rightarrow \infty) \cup(0,2) \cup(2, \infty)
\end{array} \\
& \text { 6. Let } f(x)=\sqrt{x-1} \text { and } g(x)=\frac{x}{\sqrt{x-1}} \text {. Find } \frac{f}{g}(x) \text { and its domain. } \\
& \left(\frac{f}{g}\right)(x)=\frac{\sqrt{x-1}}{\frac{x}{\sqrt{x-1}}} \cdot \frac{\sqrt{x-1}}{x}=\frac{x-1}{x} \quad x \neq 0 \quad \begin{aligned}
x-1>0 \\
x>1
\end{aligned} \\
& (1, \infty) \\
& x-1>0 \\
& x^{2}+2 x-3 \quad(x+3)(x-1)
\end{aligned}
$$

8. Sketch the graph of $f(x)=2-\sqrt{1-x}$. Starting with $y=\sqrt{x}$, list each transcation used to graph $f(x)$.

$$
y=-\sqrt{-(x-1)}+2
$$

$\rightarrow 1$ reflect over x and y axis $\uparrow 2$

9. Use the definition of absolute value to write the function $g(x)=x|x|$ as a piecewise defined function. Then sketch its graph.

$$
g(x)=\left\{\begin{array} { l l }
{ x (- x) } & { x < 0 } \\
{ x (x) } & { x \geq 0 }
\end{array} \quad \left\{\begin{array}{cc}
& x^{-x} \\
x^{2} & x \geq 0
\end{array}\right.\right.
$$

10. Find the inverse of $f(x)=\sqrt{4-x}$. Be sure to include domain.

$$
\begin{aligned}
& x=\sqrt{4-y} \quad x \geq 0 \quad(0, \infty) \\
& x^{2}=4-y \\
& y=4-x^{2} \\
& f^{-1}(x)=4-x^{2}
\end{aligned}
$$

11. Find the inverse of one-to-one function $f(x)=\frac{x+2}{x-3}$. Use that inverse function to find the range of $f(x)$. Then find the horizontal asymptote of $f(x)$ if possible.

$$
\begin{aligned}
& x=\frac{y+2}{y-3} \\
& x(y-3)=y+2 \\
& x y-3 x=y+2 \\
& x y-y=3 x+2
\end{aligned}
$$

$$
\begin{gathered}
y(x-1)=3 x+2 \\
f^{-1}(x)=\frac{3 x+2}{x-1}
\end{gathered}
$$

domain of f^{-1} is equal to the range of $f(-\infty, 1) \cup(1, \infty)$
12. Find the domain of the following functions: horizontal asymptote $y=1$
(a) $f(x)=\sqrt{x^{3}-x^{2}-6 x}$
(b) $f(x)=\ln \left(\frac{8}{x}-2\right)$

$$
\begin{aligned}
& x^{3}-x^{2}-6 x \geq 0 \\
& x\left(x^{2}-x-6\right) \geq 0 \\
& x(x-3)(x+2) \geq 0
\end{aligned}
$$

$$
\frac{8}{x}-2>0
$$

$$
\frac{8-2 x}{x}>0
$$

$(0,4)$
$[-2,0] \cup[3, \infty)$
$\begin{array}{ll}\text { (a) } \log _{3}\left(2 x^{2}-5\right)-\log _{3} x=1 & \text { (b) } 4^{3-x^{2}}=\left(\frac{1}{8}\right)^{x+1}\end{array}$
(c) $\ln (x+8)+\ln (x-2)$

$$
\text { a) } \begin{gathered}
\log _{3}\left(\frac{\left.2 x^{2}-5\right)}{x}=1\right. \\
3^{\prime}=\frac{2 x^{2}-5}{x} \\
0=2 x^{2}-3 x-5 \\
0=2 x^{2}-5 x+2 x-5 \\
=x(2 x-5)+(2 x-5)
\end{gathered}
$$

$$
{ }^{\ln (3 x+2)} \text { b) }\left(2^{2}\right)^{3-x^{2}}=\left(2^{-3}\right)^{x+1}
$$

$$
2\left(3-x^{2}\right)=-3(x+1)
$$

$$
6-2 x^{2}=-3 x-3
$$

$$
0=2 x^{2}-3 x-9
$$

$$
0=(2 x+3)(x-3)
$$

14. Find the inverse of $f(x)=e^{x+3}-4$. Sketch the graph of f and f^{-1} on the same axes. Include at least one point and any asymptotes of each function.

$$
\begin{aligned}
x & =e^{y+3}-4 \\
x+4 & =e^{y+3} \\
\ln (x+4) & =y+3 \\
f^{-1}(x) & =\ln (x+4)-3
\end{aligned}
$$

(a) Find if possible: $f(-4), f(-2), f(0), f(2), f(e+1)$.
a)
(b) Sketch the graph of $y=f(x)$. (c) Use your graph to evaluate the following

$$
f(-4)=-4+4=0
$$

b) $f(-2)=2-|-2|=0$
c) $f(0)=2-|0|=2$
d) $f(2)$ is undefined
e) $f(e+1)=\ln (e+1-1)$

$$
=\ln (e)=1
$$

limits if they exist:

1) $\lim _{x \rightarrow-2} f(x)$
2) $\lim _{x \rightarrow 0} f(x)$
3) $\lim _{x \rightarrow 2} f(x)$
=DIE
$=2$
$=0$
16. Let $f(x)=\frac{x^{2}-4}{x^{2}-2 x-8}$. Find:
(a) domain of $f \quad(-\infty,-2) \cup(2,4) \cup(4,+\infty)$
(b) all intercepts (express as ordered pairs)
(c) all vertical and horizontal asymptotes
(d) Sketch the graph of $y=f(x)$. Include the coordinates of any holes in the function.
(e) Use your graph to find $\lim _{x \rightarrow-2} f(x)$.
b) x-intercept
y-intercept

$$
\begin{array}{ll}
0=\frac{x-2}{x+4} & f(0)=\frac{0-2}{0-4} \\
0=x-2 & \text { VIA } \\
x=4 \\
x=2 \quad(2,0) & \text { HA } \quad y=1
\end{array}
$$

$$
\begin{aligned}
& y \text {-intercept } \\
& f(0)=\frac{0-2}{0-4}=\frac{1}{2} \quad\left(0, \frac{1}{2}\right)
\end{aligned}
$$

$$
\lim _{x \rightarrow-2} \frac{x-2}{x-4}=\frac{-2-2}{-2-4}=\frac{-4}{-6}=\frac{2}{3}
$$

17. There is a linear relationship between temperature in degrees Celsius C and degrees Fahrenheit F. Water freezes at $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$ and boils at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$. Write the model expressing C as function of F. What is the temperature in degrees Fahrenheit if the temperature is $30^{\circ} \mathrm{C}$? What does the slope of the line

$$
\begin{aligned}
& (32,0),(212,100) \\
& m=\frac{0-100}{32-212}=\frac{-100}{-180}=\frac{5}{9} \\
& c=m F+b \quad c=\frac{5}{9} F-\frac{160}{9} \\
& 0=\frac{5}{9}(32)+b \quad
\end{aligned}
$$

$$
b=-\frac{160}{9}
$$

tempature increases $5^{\circ} \mathrm{C}$ as Fobenkeit temp increases by 9°
18. The demand and supply functions for a given product are given by $p=D(q)=60-2 q^{2}$ and $p=S(q)=q^{2}+9 q+30$ where q is quantity in thousands and p is the unit price. Find the equilibrium quantity and price.
How many items will the supplier provide if the unit price of the product is $\$ 40$? What will be the demand for the product when the unit price is $\$ 40$? What should happen to the price of the product?
$\begin{aligned} & 60-2 q^{2}=q^{2}+9 q+30 \\ & 0=3 q^{2}+9 q-30 \\ & 0=3\left(q^{2}+3 q-10\right) \\ &=3(q+5)(q-2) \quad q=2 \\ & p=D(2)= 60-2(2)^{2}=52 \quad \$ 52 \\ & 40=q^{2}+9 q+30 \\ & 0=q^{2}+9 q-10 \\ &=\left(q^{2}+10\right)(q-1) \quad q=1 \quad \text { (1000 items) } \\ & 40=60-2 q^{2} \quad 2 q^{2}=-20 \quad \text { price will rise }\end{aligned}$
$60-2 q^{2}=q^{2}+9 q+30$
$=3 q^{2}+9 q-30$
$=3\left(q^{2}+3 q-10\right)$
$=3(q+5)(q-2)$

$$
\begin{aligned}
40 & =q^{2}+9 q+30 \\
0 & =q^{2}+9 q-10 \\
& =(q+10)(q-1) \quad q=1 \\
40 & =60-2 q^{2} \quad 2 q^{2} q=-20
\end{aligned}
$$

(1000 items)
19. A financial manager at Target has made the following observations about a certain product in one of its districts: an average of 250 units will sell in a month when the price is $\$ 15$, but an average of 50 more will sell if the price is reduced by $\$ 1$. Assuming the demand function is linear,
(a) Express p as a function of x.
(b) Find the revenue function $R(x)$. Find the production level x that will maximize revenue. What is the maximum revenue?
(c) If fixed costs are $\$ 800$ and the marginal cost is $\$ 10$ per item, find each value of x at which the company will break even. What is the profit for those values?
(d) Find the profit function $P(x)$. What price should the manager charge to

$$
\begin{aligned}
& \text { a) } m=\frac{15^{\text {mivique profit }}}{250-300}=-\frac{t}{50} \quad 15=-\frac{1}{50}(250)+b \\
& 15=5+b \quad b=20 \\
& p=-\frac{1}{50} x+20 \\
& \text { b) } R(x)=x p=x\left(-\frac{1}{50} x+20\right) \\
& =-\frac{1}{50} x^{2}+20 x \\
& x=-\frac{b}{2 a}=\frac{-20}{2\left(-\frac{1}{50}\right)}=\frac{-20}{-\frac{1}{25}}=500 \\
& (500)=-\frac{1}{50}(500)^{2}+20(500) \\
& =-5000+10,000=500 \text { \& maximum revenue } \\
& \text { C.) } \text { revenue }=\text { cost } \\
& -\frac{1}{50} x^{2}+20 x=10 x+800 \\
& 0=\frac{1}{50} x^{2}-10 x+800 \\
& =x^{2}-500 x+40,000 \\
& (x-400)(x-100)
\end{aligned}
$$

d)

$$
\begin{aligned}
\text { Profit } & =\text { Revenue }- \text { cost } \\
P(x) & =-\frac{1}{50} x^{2}+20 x-(10 x+800) \\
& =-\frac{1}{50} x^{2}+10 x-800 \\
x & =\frac{-b}{2 a} \\
& =\frac{-10}{2\left(-\frac{1}{50}\right)} \\
& =250 \\
P & =-\frac{1}{50} x+20 \\
P & =-\frac{1}{50}(250)+20 \\
& =-5+20 \\
& =15
\end{aligned}
$$

20. A farmer plans to spend $\$ 6000$ to enclose a rectangular field with two kinds of fencing. Two opposite sides will require heavy-duty fencing that costs $\$ 3$ per linear foot, while the other two sides can be constructed with standard fencing that costs $\$ 2$ per foot. Express the area of the field, A, as a function of x, the length of a side that requires the more expensive fence. Find the value of x that will maximize the area of the field, and the length of a side that uses standard
 fencing.

$$
\begin{array}{rl}
A=x y \quad 2(3 x)+2(2 y) & =6000 \\
=x\left(1500-\frac{3}{2} x\right) & 3 x+2 y \\
= & 2 y \\
= & =30000 \\
=1500 x-\frac{3}{2} x^{2} & y
\end{array}=1500-\frac{3}{2} x .
$$

$$
\begin{array}{rlrl}
x=\frac{-b}{2 a}=\frac{-1500}{2\left(-\frac{3}{2}\right)}=500 & y & =1500-\frac{3}{2}(500) \\
& =750
\end{array}
$$

21. Rewrite the expression as the sum, difference, or multiple of logarithms:
(a) $\log \frac{x^{2}}{1000}$
(b) $\ln \sqrt[3]{\frac{e^{x+1}(x-2)^{4}}{x^{6}}}$

$$
\begin{aligned}
& (a)=\log x^{2}-\log 1000 \\
& =2 \log x-3 \\
& \text { (b) } \begin{aligned}
\ln \sqrt[3]{e^{x+1}(x-2)^{4}} & =\frac{1}{3} \ln \left(\frac{e^{x+1}(x-2)^{4}}{x^{6}}\right) \\
& =\frac{1}{3}\left[\ln e^{x+1}+\ln (x-2)^{4}-\ln x^{6}\right) \\
& =\frac{1}{3}(x+1+4 \ln (x-2)-6 \ln x)
\end{aligned}
\end{aligned}
$$

22. Mr. Jones invested $\$ 2500$ at 5.5% compounded continuously. How long will it take his account to grow to $\$ 4000$ if he adds no new funds to the account?

$\frac{8}{5}=e^{.055 t}$
$\ln \left(\frac{8}{23} 5\right.$ IIN med money must order to have $\$ 6000$ in three years?

$$
\begin{aligned}
& 6000=P_{0}\left(1+\frac{.0325}{4}\right)^{4.3} \\
& P_{0}=\frac{6000}{\left(1+\frac{.0325}{4}\right)^{12}} \approx \$ 5444.76
\end{aligned}
$$

24. Iodine - 131 has a half-life of 8 days. Suppose some hay was contaminated with ten times the allowable amount of I-131. How long must the hay be stored before it can be fed to cattle? Hint: the hay must have one-tenth of its current amount of I-131.

$$
\begin{gathered}
\frac{1}{2} \mathscr{X}_{0}=\mathscr{X}_{0} e^{k(8)} \\
\frac{1}{2}=e^{8 k} \\
\ln \left(\frac{1}{2}\right)=8 k \\
k=\frac{\ln \left(\frac{1}{2}\right)}{8}
\end{gathered}
$$

$$
\begin{aligned}
& Q(t)=Q_{0} e^{\frac{\ln \left(\frac{2}{2}\right.}{8} t} t \\
& \frac{1}{10} \psi_{0}=Q_{0} e^{\frac{\ln \left(\frac{1}{8}\right)}{8} t} \\
& \ln \left(\frac{1}{10}\right)=\frac{\ln \left(\frac{1}{2}\right)}{8} t \\
& t=\frac{8 \ln \left(\frac{1}{10}\right)}{\ln \left(\frac{1}{2}\right)} \approx 26.57
\end{aligned}
$$

25. Use the following graph of a function $f(x)$ to evaluate the limits and function value if possible. If the limit does not exist, write "dne".

a) $\lim _{x \rightarrow 0^{-}} f(x)=\infty$
b) $\lim _{x \rightarrow 0^{+}} f(x)-\infty$
c) $\lim _{x \rightarrow 0} f(x)=$ DNE
d) $\lim _{x \rightarrow 1+} f(x)=1$
e) $\lim _{x \rightarrow 1^{-}} f(x)=0$
f) $\lim _{x \rightarrow 1} f(x)=$ DNE
g) $\lim _{x \rightarrow 3} f(x)=3$
h) $f(3)=0$
i) $\lim _{x \rightarrow-1} f(x)=2$
26. Use the properties of limits to evaluate $\lim _{x \rightarrow a} \frac{(f g)(x)}{\sqrt[3]{g(x)-1}}$ if $\lim _{x \rightarrow a} f(x)=-\frac{1}{3}$ and $\lim _{x \rightarrow a} g(x)=9$.

27. Evaluate (a) $\lim _{x \rightarrow-1} \frac{x+\sqrt{x+2}}{x+1}$ and (b) $\lim _{x \rightarrow 2} \frac{\frac{2}{x}-1}{x-2}$.
a)

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{x+\sqrt{x+2}}{x+1} \cdot \frac{x-\sqrt{x+2}}{x-\sqrt{x+2}} & =\lim _{x \rightarrow-1} \frac{x^{2}-(x+2)}{(x+1)(x-\sqrt{x+2}))} \\
& =\lim _{x \rightarrow-1} \frac{(x-2)(x+x)}{(x+1)(x-\sqrt{x+2})} \\
& =\lim _{x \rightarrow-1} \frac{x-2}{x-\sqrt{x+2}} \\
& =\frac{-1-2}{-1-\sqrt{-1+2}}=\frac{-3}{-2}=\frac{3}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{\frac{2}{x}-1}{x-2} \cdot \frac{x}{x} & =\lim _{x \rightarrow 2} \frac{2-x}{x(x-2)} \\
& =\lim _{x \rightarrow 2} \frac{-(-2+x)}{x(x-2)} \\
& =\lim _{x \rightarrow 2}-\frac{1}{x}=-\frac{1}{2}
\end{aligned}
$$

find $p=\lim _{x \rightarrow-4} f(x)$ and $q=\lim _{x \rightarrow 1^{-}} f(x)$.

$$
\begin{aligned}
& \frac{x^{2}-16}{x^{2}+3 x-4}=\frac{(x-4)(x+4)}{(x+4)(x-1)}=\frac{x-9}{x-1} \\
& \lim _{x \rightarrow-4} \frac{x-4}{x-1}=\frac{-8}{-5} \\
& \lim _{x \rightarrow 1^{-}} \frac{x-4}{x-1} \quad \frac{\text { approaches }-5}{\begin{array}{c}
\text { approaches } 0 \\
\text { negative. }
\end{array}}=\text { and }
\end{aligned}
$$

29. Sketch the graph of $f(x)=\frac{|6-2 x|}{x-3}$. Hint: rewrite as a piecewise function without absolute value bars.

Use the graph to find: (a) $\lim _{x \rightarrow 3^{-}} f(x)$, (b) $\lim _{x \rightarrow 3^{+}} f(x)$, and (c) $\lim _{x \rightarrow 3} f(x)$.
Now find those limits algebraically without using the graph.

$$
\begin{aligned}
& \lim _{\substack{x \rightarrow 3^{-}}}-2=-2 \\
& \lim _{x \rightarrow 3^{+}} 2=2
\end{aligned}
$$

30. If $f(x)=\frac{x^{3}+3 x^{2}+2 x}{x-x^{3}}$, find a) $\lim _{x \rightarrow 0^{+}} f(x)$ b) $\lim _{x \rightarrow-1^{+}} f(x)$, c) $\lim _{x \rightarrow 1^{-}} f(x)$
and d) $\lim _{x \rightarrow-\infty} f(x)$. Find each vertical and horizontal asymptote of $f(x)$.

a) $\lim _{x \rightarrow+^{+}} f(x)=2$
b) $\lim _{x \rightarrow-1^{+}} f(x)=\frac{1}{2}$
c) $\lim _{x \rightarrow 1^{-}} f(x)=\infty$.

31. If $f(x)=\frac{2}{e^{-x}-3}$, find if possible:
1) $\lim _{x \rightarrow-\infty} f(x) \quad$ 2) $\lim _{x \rightarrow+\infty} f(x) \quad$ 3) Each asymptote of the graph of $f(x)$.

$$
\begin{array}{ll}
\lim _{x \rightarrow-\infty} \frac{2}{\frac{1}{e^{x}}-3}=\lim _{x \rightarrow-\infty} & \frac{2 e^{x 0}}{1-3 e^{x}}=0 \\
\lim _{x \rightarrow \infty} \frac{2}{\frac{1}{e^{x}}-3}=-\frac{2}{3} & e^{-x}=3 \\
& \frac{1}{3}=e^{x} \\
\ln \left(\frac{1}{3}\right)=x
\end{array}
$$

asymptotes

$$
y=0
$$

$$
y=-\frac{2}{3}
$$

$$
x=\ln \left(\frac{1}{3}\right)
$$

32. The Intermediate Value Theorem guarantees that the function
$f(x)=x^{3}-\frac{1}{x}-5 x+3$ has a zero on which of the following intervals?
a) $[-1,1]$
b) $[1,3]$
c) $[3,5]$
d) $[-3,-2]$
b)

$$
\left.\begin{array}{l}
f(1)=(1)^{3}-\frac{1}{1}-5(1)+3=-2<0 \\
f(3)=3^{3}-\frac{1}{3}-5(3)+3>0
\end{array}\right\} \begin{aligned}
& \text { changes } \\
& \text { signs }
\end{aligned}
$$

d)

$$
\begin{gathered}
f(-3)=(-3)^{3}-\frac{1}{-3}-5(-3)+3<0 \\
f(-2)=(-2)^{3}-\frac{1}{-2}-5(-2)+3 \\
8+\frac{1}{2} \quad 10+3>0
\end{gathered} \quad\left\{\begin{array}{l}
\text { changes } \\
\text { signs }
\end{array}\right.
$$

33. Consider a function $f(x)$ which has the following graph.
(a) On which interval(s) is $f(x)$ continuous? $(-\infty,-2),(-2,0),(0,3),(3,4)$,
(b) $f(x)$ has a jump discontinuity at $x=0$
\qquad
(c) $f(x)$ has an infinite discontinuity at $x=4$
(d) $f(x)$ has a removable discontinuity at $x=-2,3$.
(e) How would you define or redefine $f(x)$ at the point(s) in part (d) in order to make $f(x)$ continuous?

$$
f(-2)=0 \quad f(3)=0
$$

