	VS A	VS B
1	C	A
2	A	A
3	D	C
4	B	B
5	C	C
6	D	D
7	C	C
8	None	None
9	B	B
10	D	A
11	C	D
12	E	E
13	B	C
14	A	B

Section \# \qquad
UP ID \# \qquad

Name \qquad
Signature \qquad

YOU MUST SHOW ALL WORK TO RECEIVE FULL CREDIT.

1. Let $f(x)=2 x^{2}-3 x+4$. Find and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$.

$$
\begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{2(x+h)^{2}-3(x+h)+4-\left(2 x^{2}-3 x+4\right)}{h} \\
& =\frac{2\left(x^{2}+2 x h+h^{2}\right)-3 x-3 h-4-2 x^{2}+3 x-4}{h} \\
& =\frac{2 x^{2}+4 x h+2 h^{2}-3 x-3 h-2 x-2 x^{2}+3 x-2 x}{h} \\
& =\frac{4 x h+2 h^{2}-3 h}{h} \\
& =\frac{h(4 x+2 h-3)}{h} \\
& =4 x+2 h-3
\end{aligned}
$$

2. Use the graph of the function $f(x)$ is given below. Answer the following questions.

(a) State the domain.

$$
[-3,6]
$$

(b) State the range.

$$
[0,3]
$$

(c) Find $f(-3)=0$
(d) What are the values of x for which $f(x)=1$

$$
x=-2,2,4
$$

(e) Find $(f \circ f)(3)=f(f(3))$

$$
\begin{aligned}
& =f(0) \\
& =3
\end{aligned}
$$

3. Suppose the depand and price for a certain model of youth wrist watch are related by the following equation. $p=D(q)=16-1.25 q$ where p is the price (in dollars) and q is the quantity demanded(in hundreds). Suppose the price and supply are related by the following equation. $p=S(q)=.75 q$
(a) Find the price when the demand is 0 watches.

$$
p=16-1.25(0)=16
$$

(b) Find the price when the demand is 400 watches.

$$
P=16-1.25(4)=11
$$

(c) Find the quantity demanded for the watches when the price is $\$ 6$.

$$
\begin{aligned}
& 6=16-1.25 q \\
& q=8
\end{aligned}
$$

800 watches
(d) Find the quantity supplied at a price of $\$ 0$.

$$
\begin{aligned}
& 0=.75 q \\
& q=0
\end{aligned}
$$watches

(e) Find the quantity supplied at a price of $\$ 10$.

$$
\begin{aligned}
& 10=.759 \\
& 9=13.3 \quad 1.333 \text { watches }
\end{aligned}
$$

(f) Find the equilibrium quantity and equilibrium price.

$$
\begin{aligned}
16-1.25 q & =.75 a \\
16 & =2 a \\
9 & =8
\end{aligned}
$$

4. While reviewing his accounts over the past year, the manager of a mall T-shirt stand made the following observations. During a normal week, he sold an average of 40 Gator T-shirts at a price $\$ 18$ each. When he reduced the price by $\$ 6$ for a clearance sale, an average of 10 more T-shirts sold per week.
(a) Find a linear model expressing demand x, the average number of T -shirts sold weekly as function of p, the price of a T-shirt.

$$
\begin{aligned}
& (18,40)^{n} \\
& (12,50)
\end{aligned}
$$

$$
m=\frac{10}{-6}=-\frac{5}{3}
$$

$$
x(p)=-\frac{5}{3} p+70
$$

$$
\begin{aligned}
& y-50=-\frac{5}{3}(p-12) \\
& y-50=-\frac{5}{3} p+20
\end{aligned}
$$

(b) One week the manager sold 58 T-shirts. Use your function to find the selling price of a T-shirt that week.

$$
\begin{aligned}
58 & =-\frac{5}{3} p+70 \\
-12 & =-\frac{5}{3} p \\
p & =7.20
\end{aligned}
$$

