MAC 1147 Fall 2019

Final Exam A

A.	Sign	and	date your	scantron	on th	e back	at	the	bottom.
----	------	-----	-----------	----------	-------	--------	----	-----	---------

B. In pencil, write and encode in the spaces indicated on your scantron:

- 1) Name (last name, first initial, middle initial)
- 2) UF ID Number
- 3) Section Number Do not fill this out.
- C. Under "special codes" on your scantron, code in the test ID number 5, 1.
 - 1 2 3 4 6 7 8 9 0
 - 2 3 4 5 6 7 8 9 0
- D. At the top right of your scantron, for "Test Form Code", encode A.
 - B C D E
- E. 1) There are twenty-one 5-point multiple-choice questions, for a total of 105 points.
 - 2) The time allowed is 120 minutes.
 - 3) You may write on the test.
 - 4) Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.

F. KEEP YOUR SCANTRON COVERED AT ALL TIMES.

- G. When you are finished:
 - 1) Before turning in your test, check for transcribing errors. Any mistakes you leave in are there to stay.
 - 2) Take your test, scratch paper, and scantron to your TA. Be prepared to show your UF ID card.
 - 3) Answers will be posted in E-Learning after the exam.
- H. By taking this exam, you agree to the following Honor Pledge:

"I will neither give nor receive any unauthorized aid for this exam."

Questions 1-21 are worth 5 points each.

1. The two expressions below are equivalent if which restrictions are made on x?

$$\frac{x^2 - 11x + 28}{2x^2 - 11x + 15} \cdot \frac{x - 3}{x - 7}$$

$$\frac{x-4}{2x-5}$$

A.
$$x \neq 0$$

B.
$$x \neq 3$$

C.
$$x \neq 3, 7$$

D.
$$x \neq \frac{5}{2}$$

E. The expressions are equivalent for all x.

2. The points (7,4) and (13,12) are the endpoints of a diameter of a circle. What is the equation of the circle?

A.
$$(x-7)^2 + (y-4)^2 = 5$$

B.
$$(x-7)^2 + (y-4)^2 = 25$$

C.
$$(x-10)^2 + (y-8)^2 = 5$$

D.
$$(x-10)^2 + (y-8)^2 = 25$$

E.
$$x^2 + y^2 = 1$$

- 3. What is the y-intercept of the line that passes through the points (10,25) and (20,43)? Hint: First find the equation of the line.
 - A. 9

- B. $\frac{5}{7}$
- C. $\frac{1}{9}$
- D. 8
- E. 7

4. Which picture shows the graph of $f(x) = (x-4)^3 + 3$?

A.

D.

В.

E.

C.

5. Use the table of f(x) and graph of g(x) below to evaluate $(g \circ f)(3)$.

- A. 3
- B. 4
- C. 0
- D. 5

E. 9

6. The function f(x) below is one-to-one. What is its inverse?

$$f(x) = \sqrt[5]{4x + 7}$$

- A. $f^{-1}(x) = \frac{1}{\sqrt[5]{4x+7}}$
- B. $f^{-1}(x) = \left(\frac{1}{4}x 7\right)^5$ C. $f^{-1}(x) = \frac{x^5 7}{4}$

- D. $f^{-1}(x) = \sqrt[5]{4x+7}$
- E. $f^{-1}(x) = \left(\frac{x}{4}\right)^5 7$

- 7. For which value of c does the function $f(x) = -9x^2 + 12x + c$ have two x-intercepts? Hint: Use the discriminant.
 - A. -3
 - B. -4
 - C. -6
 - D. -8
 - E. There are no values of c for which f(x) has two x-intercepts.
- 8. Suppose that f(x) is a polynomial with zeros at x = 3 and x = 4i. Which polynomial is a factor of f(x)?
 - A. $x^2 + 7x + 12$

B. x + 3

C. $x^2 - 16$

- D. $x^3 3x^2 + 16x 48$
- E. x 4
- 9. Which statements correctly describe the behavior of the function below?

$$g(x) = \frac{-7x^5 + 11x^2 + 9}{3x^8 + 2x^3 + 10}$$

Hint: Find the horizontal asymptote.

- A. As $x \to \infty$, $g(x) \to \infty$. As $x \to -\infty$, $g(x) \to \infty$.
- B. As $x \to \infty$, $g(x) \to -\infty$. As $x \to -\infty$, $g(x) \to -\infty$.
- C. As $x \to \infty$, $g(x) \to 0$. As $x \to -\infty$, $g(x) \to 0$.
- D. As $x \to \infty$, $g(x) \to \frac{-7}{3}$. As $x \to -\infty$, $g(x) \to \frac{-7}{3}$.
- E. As $x \to \infty$, $g(x) \to -\infty$. As $x \to -\infty$, $g(x) \to \infty$.

10. Find the solution to the inequality.

$$\frac{x^2 - 9x + 14}{x^2 - 13x + 36} > 0$$

A. $(-\infty, \infty)$

- B. $(2,4) \cup (7,9)$
- C. $(-\infty, 2) \cup (7, 9)$

D. (4,7)

E. $(-\infty, 2) \cup (4, 7) \cup (9, \infty)$

11. Given the function $f(t) = Pe^{rt}$ with r > 0, and P > 1, which graph below could be the graph of f(t)?

A.

B.

C.

D.

12. Given that x > 0, simplify the expression using the properties of logarithms and exponents.

$$\ln\left(9\sqrt[3]{x^4}\right) - \ln\left(7\sqrt[5]{x^3}\right)$$

A. $\ln \left(\frac{9}{7} \sqrt[15]{x^{11}} \right)$

B. $\ln(2\sqrt{x})$

C. $\ln\left(2\sqrt[5]{x^4}\right)$

D. $\ln\left(16\sqrt[5]{x^3}\right)$

- E. $\ln \left(\frac{9}{7} \sqrt[15]{x^{29}} \right)$
- 13. A population's growth is modeled using the function $f(t) = ae^{bt}$. The population grows from 150 to 450 over the course of 8 years. What is the value of b?

- A. $\frac{\ln{(2)}}{8}$
- B. $\frac{\ln{(8)}}{2}$ C. $\frac{\ln{(3)}}{8}$
- D. $\frac{\ln{(8)}}{3}$
- E. $\frac{\ln(3)}{\ln(2)}$
- 14. Which angle's terminal side lies in Quadrant II when in standard position?

A. $\theta = 0$ radians

B. $\theta = 1$ radian

C. $\theta = 3$ radians

D. $\theta = 5$ radians

E. $\theta = 7$ radians

15. Choose the value that is different from the others.

- A. $\sin\left(\frac{5\pi}{4}\right)$ B. $\sin\left(\frac{3\pi}{4}\right)$ C. $\sin\left(\frac{\pi}{4}\right)$ D. $\sin\left(\frac{11\pi}{4}\right)$ E. $\cos\left(\frac{-\pi}{4}\right)$

16. Identify the function f(x) graphed below.

- A. $f(x) = 4\cos\left(2x \frac{\pi}{2}\right)$ B. $f(x) = 4\sin\left(2x \frac{\pi}{2}\right)$ C. $f(x) = 4\cos\left(x \frac{\pi}{4}\right)$
- D. $f(x) = 4\sin\left(x \frac{\pi}{4}\right)$ E. $f(x) = 4\sin(2x)$

17. Rewrite the trigonometric expression below in algebraic form.

$$\cos\left(\arctan\frac{k}{5}\right)$$

A.
$$\frac{\sqrt{25-k^2}}{5}$$

A.
$$\frac{\sqrt{25-k^2}}{5}$$
 B. $\frac{k}{\sqrt{k^2+25}}$ C. $\frac{\sqrt{25-k^2}}{k}$ D. $\frac{k}{5}$

C.
$$\frac{\sqrt{25-k^2}}{k}$$

D.
$$\frac{k}{5}$$

E.
$$\frac{5}{\sqrt{k^2 + 25}}$$

18. Given a > 0 and $a \neq 1$, $y = \log_a x$ if and only if...

A.
$$x^y = a$$

B.
$$y^x = a$$

A.
$$x^{y} = a$$
 B. $y^{x} = a$ C. $a^{x} = y$ D. $a^{y} = x$ E. $x^{a} = y$

D.
$$a^y = x$$

E.
$$x^a = y$$

19. Find the solutions to the equation $6\cos^2(x) + 5 = 8$ on the interval $[0, 2\pi)$. What is the sum of the solutions?

C.
$$2\pi$$

D.
$$3\pi$$

E.
$$4\pi$$

20. Evaluate: cos (15°)

$$A. \frac{\sqrt{6} - \sqrt{2}}{4}$$

A.
$$\frac{\sqrt{6} - \sqrt{2}}{4}$$
 B. $\frac{\sqrt{6} + \sqrt{2}}{4}$ C. $\frac{\sqrt{2} - \sqrt{6}}{4}$ D. $\frac{\sqrt{6} - \sqrt{3}}{4}$ E. $\frac{\sqrt{6} + \sqrt{3}}{4}$

C.
$$\frac{\sqrt{2}-\sqrt{6}}{4}$$

D.
$$\frac{\sqrt{6} - \sqrt{3}}{4}$$

E.
$$\frac{\sqrt{6} + \sqrt{3}}{4}$$

21. Which of these expresses $\sin(160^\circ)$ in terms of $\sin(80^\circ)$ and $\cos(80^\circ)$?

A.
$$\pm \sqrt{\frac{1 + \cos{(80^{\circ})}}{2}}$$

B.
$$2\sin{(80^{\circ})}\cos{(80^{\circ})}$$

C.
$$\frac{\sin((80^{\circ}))}{1 + \cos(80^{\circ})}$$

D.
$$\cos^2(80^\circ) - \sin^2(80^\circ)$$

E.
$$\frac{1 - \cos(80^\circ)}{\sin(80^\circ)}$$