Questions 1-21 are worth 5 points each.

1. The two expressions below are equivalent if which restrictions are made on x ?

$$
\begin{aligned}
& (x-7)(x-4) \\
& \frac{x^{2}-11 x+28}{2 x^{2}-11 x+15} \cdot \frac{x-3}{\overline{x-7}} \\
& (2 x-5)(x-3)
\end{aligned}
$$

A. $x \neq 0$
B. $x \neq 3$
C. $x \neq 3,7$
D. $x \neq \frac{5}{2}$
E. The expressions are equivalent for all x.
2. The points $(7,4)$ and $(13,12)$ are the endpoints of a diameter of a circle. What is the equation of the circle?

$$
\operatorname{contcr}=\left(\frac{13+7}{z}, \frac{12+4}{z}\right)=(10,8)
$$

A. $(x-7)^{2}+(y-4)^{2}=5$
B. $(x-7)^{2}+(y-4)^{2}=25$
C. $(x-10)^{2}+(y-8)^{2}=5$
D. $(x-10)^{2}+(y-8)^{2}=25$

$$
\sqrt{(10-7)^{2}+(8-4)^{2}}=\sqrt{3^{2}+4^{2}}
$$

E. $x^{2}+y^{2}=1$
3. What is the y-intercept of the line that passes through the points $(10,25)$ and $(20,43)$? Hint: First find the equation of the line.
A. 9
B. $\frac{5}{7}$
C. $\frac{1}{9}$
D. 8
E. 7
$\frac{43-25}{20-10}=\frac{18}{10}=\frac{9}{5}$

$$
\begin{aligned}
y & =\frac{9}{5}(x-10)+25 \\
& =\frac{9}{5} x-18+25 \\
& =\frac{9}{5} x+7
\end{aligned}
$$

4. Which picture shows the graph of $f(x)=(x-4)^{3}+3$?

D.

B.

C.

E.

5. Use the table of $f(x)$ and graph of $g(x)$ below to evaluate $(g \circ f)(3) \cdot f(3)=5$

A. 3
B. 4
C. 0
D. 5
E. 9
6. The function $f(x)$ below is one-to-one. What is its inverse?

$$
x=\sqrt[5]{4 y+7}
$$

$$
f(x)=\sqrt[5]{4 x+7}
$$

$$
x^{5}=4 y+7
$$

$$
x^{5}-7=4 y
$$

A. $f^{-1}(x)=\frac{1}{\sqrt[5]{4 x+7}}$
B. $f^{-1}(x)=\left(\frac{1}{4} x-7\right)^{5}$
C. $f^{-1}(x)=\frac{x^{5}-7}{4}$
D. $f^{-1}(x)=\sqrt[5]{4 x+7}$
E. $f^{-1}(x)=\left(\frac{x}{4}\right)^{5}-7 \quad \frac{x^{5}-7}{4}=y$
7. For which value of c does the function $f(x)=-9 x^{2}+12 x+c$ have two x-intercepts?

Hint: Use the discriminant.

$$
D=12^{2}-4(-9)(-3)=144-108
$$

A. -3

$$
=32>0
$$

B. -4
C. -6
D. -8
E. There are no values of c for which $f(x)$ has two x-intercepts.
\rightarrow and $x=-4 i$
8. Suppose that $f(x)$ is a polynomial with zeros at $x=3$ and $x=4 i$. Which polynomial is a factor of $f(x)$?

$$
(x-3)(x-4 i)(x-(-4 i))=(x-3)\left(x^{2}+18\right)
$$

B. $x+3$
C. $x^{2}-16$
9. Which statements correctly describe the behavior of the function below?

Hint: Find the horizontal asymptote.

$$
g(x)=\frac{-7 x^{5}+11 x^{2}+9}{3 x^{8}+2 x^{3}+10} \text { deg } \text { deg }
$$

A. As $x \rightarrow \infty, g(x) \rightarrow \infty$. As $x \rightarrow-\infty, g(x) \rightarrow \infty$.
B. As $x \rightarrow \infty, g(x) \rightarrow-\infty$. As $x \rightarrow-\infty, g(x) \rightarrow-\infty$.
C. As $x \rightarrow \infty, g(x) \rightarrow 0$. As $x \rightarrow-\infty, g(x) \rightarrow 0$.
D. As $x \rightarrow \infty, g(x) \rightarrow \frac{-7}{3}$. As $x \rightarrow-\infty, g(x) \rightarrow \frac{-7}{3}$.
E. As $x \rightarrow \infty, g(x) \rightarrow-\infty$. As $x \rightarrow-\infty, g(x) \rightarrow \infty$.
10. Find the solution to the inequality.

$$
\begin{aligned}
& (x-7)(x-2)+\quad+\quad+ \\
& \frac{x^{2}-9 x+14}{x^{2}-13 x+36}>0 \\
& (x-9)(x-4)
\end{aligned}
$$

A. $(-\infty, \infty)$
B. $(2,4) \cup(7,9)$
C. $(-\infty, 2) \cup(7,9)$
D. $(4,7)$
E. $(-\infty, 2) \cup(4,7) \cup(9, \infty)$
11. Given the function $f(t)=P e^{r t}$ with $r>0$, and $P>1$, which graph below could be the graph of $f(t)$?

$$
y \text {-int }>1
$$

C.

B.

D.

12. Given that $x>0$, simplify the expresison using the properties of logarithms and exponents.

$$
=\ln \left(\frac{9 x^{4 / 3}}{7 x^{3 / 5}}\right)=\ln \left(9 \sqrt[3]{x^{4}}\right)-\ln \left(7 \sqrt[5]{x^{3}}\right)=\ln \left(9 x^{1 / 3}\right)-\ln \left(7 x^{3 / 5}\right)
$$

13. A population's growth is modeled using the function $f(t)=a e^{b t}$. The population grows from 150 to

$$
450=150 e^{6(8) \rightarrow 3=e^{8 b} \rightarrow 1 n 3=810}
$$

A. $\frac{\ln (2)}{8}$
B. $\frac{\ln (8)}{2}$
C. $\frac{\ln (3)}{8}$
D. $\frac{\ln (8)}{3}$
E. $\frac{\ln (3)}{\ln (2)}$
14. Which angle's terminal side lies in Quadrant II when in standard position?

A. $\theta=0$ radians
B. $\theta=1$ radian
D. $\theta=5$ radians
E. $\theta=7$ radians
C. $\theta=3$ radians
15. Choose the value that is different from the others.

16. Identify the function $f(x)$ graphed below.

A. $f(x)=4 \cos \left(2 x-\frac{\pi}{2}\right)$
B. $f(x)=4 \sin \left(2 x-\frac{\pi}{2}\right)$
C. $f(x)=4 \cos \left(x-\frac{\pi}{4}\right)$
D. $f(x)=4 \sin \left(x-\frac{\pi}{4}\right)$
E. $f(x)=4 \sin (2 x)$

$$
\begin{aligned}
& \text { Per }=\pi \rightarrow b=2 \\
& \text { shift }=\pi / 4 \rightarrow c=\frac{\pi}{2}
\end{aligned}
$$

17. Rewrite the trigonometric expression below in algebraic form.

θ
$\cos \left(\arctan \frac{k}{5}\right)$
A. $\frac{\sqrt{25-k^{2}}}{5}$
B. $\frac{k}{\sqrt{k^{2}+25}}$
C. $\frac{\sqrt{25-k^{2}}}{k}$
D. $\frac{k}{5}$

18. Given $a>0$ and $a \neq 1, y=\log _{a} x$ if and only if...

$$
\begin{gathered}
\downarrow \\
a^{y}=x
\end{gathered}
$$

A. $x^{y}=a$
B. $y^{x}=a$
C. $a^{x}=y$
D. $a^{y}=x$
E. $x^{a}=y$
19. Find the solutions to the equation $6 \cos ^{2}(x)+5=8$ on the interval $[0,2 \pi)$. What is the sum of the solutions? $6 \cos ^{2} x=3 \rightarrow \cos ^{2} x=\frac{1}{2}$
$\cos x= \pm \frac{\sqrt{2}}{2}, x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$
A. 0
B. π
C. 2π
D. 3π
E. 4π
20. Evaluate: $\cos \left(15^{\circ}\right)=\cos (45-30)=\cos 45 \cdot \cos 30+\sin 45 \sin 30$

$$
\frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \frac{1}{2}
$$

A. $\frac{\sqrt{6}-\sqrt{2}}{4}$
B. $\frac{\sqrt{6}+\sqrt{2}}{4}$
C. $\frac{\sqrt{2}-\sqrt{6}}{4}$
D. $\frac{\sqrt{6}-\sqrt{3}}{4}$
E. $\frac{\sqrt{6}+\sqrt{3}}{4}$
21. Which of these expresses $\sin \left(160^{\circ}\right)$ in terms of $\sin \left(80^{\circ}\right)$ and $\cos \left(80^{\circ}\right)$?

$$
\sin (160)=\sin (2 \cdot 80)=2 \sin 80 \cos 80
$$

A. $\pm \sqrt{\frac{1+\cos \left(80^{\circ}\right)}{2}}$
B. $2 \sin \left(80^{\circ}\right) \cos \left(80^{\circ}\right)$
C. $\frac{\sin \left(\left(80^{\circ}\right)\right)}{1+\cos \left(80^{\circ}\right)}$
D. $\cos ^{2}\left(80^{\circ}\right)-\sin ^{2}\left(80^{\circ}\right)$
E. $\frac{1-\cos \left(80^{\circ}\right)}{\sin \left(80^{\circ}\right)}$

