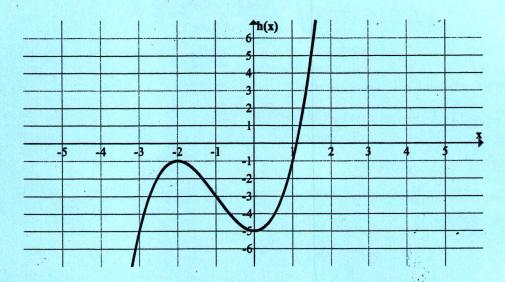
MAC 1147 Fall 2019

EXAM 2A

A.	Sign	and	date	your	scantron	on	the	back	at	the	bottom.	
----	------	-----	------	------	----------	----	-----	------	----	-----	---------	--

- B. In pencil, write and encode in the spaces indicated on your scantron:
 - 1) Name (last name, first initial, middle initial)
 - 2) UF ID Number
 - 3) Section Number Do not fill this out.
- C. Under "special codes" on your scantron, code in the test ID number 2, 1.
 - 1 3 4 5 6 7 8 9 0
 - 2 3 4 5 6 7 8 9 0
- D. At the top right of your scantron, for "Test Form Code", encode A.
 - B C D E
- E. 1) There are eighteen 4-point multiple-choice questions and two 4-point free response questions, for a total of 80 points.
 - 2) The time allowed is 90 minutes.
 - 3) You may write on the test.
 - 4) Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.


F. KEEP YOUR SCANTRON COVERED AT ALL TIMES.

- G. When you are finished:
 - 1) Before turning in your test, check for transcribing errors. Any mistakes you leave in are there to stay.
 - 2) Take your test, scratch paper, and scantron to your TA. Be prepared to show your UF ID card.
 - 3) Answers will be posted in E-Learning after the exam.
- H. By taking this exam, you agree to the following Honor Pledge:

"I will neither give nor receive any unauthorized aid for this exam."

Questions 1-20 are worth 4 points each.

1. Select the set on which the function graphed below is increasing.

A.
$$(-5,\infty)$$

B.
$$(-\infty, -2) \cup (0, \infty)$$

C.
$$(-\infty, -1) \cup (-5, \infty)$$

D.
$$(0,\infty)$$

E.
$$(-\infty, \infty)$$

2. Given a function f(x), which expression would shift the graph of f(x) 3 units to the right, then shift it 4 units up, and then reflect it across the y-axis?

A.
$$f(-x+3)+4$$

B.
$$f(-x-3)+4$$

C.
$$-f(x+3)+4$$

D.
$$f(-x-3)-4$$

E.
$$-f(x+3)-4$$

- 3. Which of the following statements is true for all functions f(x) and g(x)?
 - A. $(f \circ g)(x) = (g \circ f)(x)$
 - B. $(f \cdot g)(x) = (g \cdot f)(x)$
 - C. $\left(\frac{f}{g}\right)(x) = \left(\frac{g}{f}\right)(x)$
 - D. (f-g)(x) = (g-f)(x)
 - E. All of these statements are true for all f(x) and g(x)
- 4. Using the information provided below for the functions f(x) and g(x), evaluate $(f \circ g)(2)$.

$$f(x) = 3x - 5$$

- A. 5
- B. 3

- C. 4
- D. 7

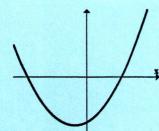
E. 2

- 5. Find the inverse function of $f(x) = 3x^5 + 2$.
 - A. $f^{-1}(x) = \frac{\sqrt[5]{x} 2}{3}$
 - D. $f^{-1}(x) = \sqrt[5]{\frac{x}{3} 2}$
- B. $f^{-1}(x) = \sqrt[5]{x} \frac{2}{3}$
- E. $f^{-1}(x) = \sqrt[5]{\frac{x-2}{3}}$
- C. $f^{-1}(x) = \frac{\sqrt[5]{x-2}}{3}$

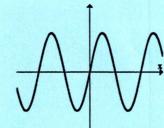
- 6. Which point is the vertex of the parabola $h(x) = 2x^2 + 8x + 3$?
 - A. (0,3)
- B. (-2,0) C. (-2,-5) D. (-2,3)
- E. (0, -5)
- 7. Suppose that $f(x) = ax^2 + bx + c$ is a quadratic function with x-intercepts -3 and 5, and f(0) < 0. Which of the following <u>must</u> be true of f(x)?

$$I. \ \frac{-b}{2a} = 1$$

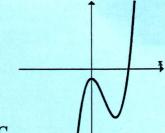
- II. c > 0
- III. The graph of f(x) opens upward.
- A. I only

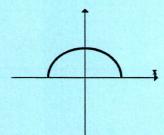

B. I and III only

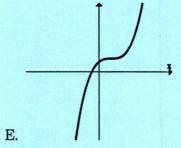
C. II only


D. II and III only

- E. I, II, and III
- 8. For a function f(x), whenever x < 5 then f(x) < f(5) and whenever x > 5 then f(x) < f(5). What can we conclude from this about the graph of f(x)?
 - A. The graph of f(x) has no x-intercepts
 - B. f(5) is a relative maximum of f(x)
 - C. The graph of f(x) is increasing on its entire domain
 - D. f(5) is the y-intercept of f(x)
 - E. f(x) has no relative minimum


12. Choose the function that has an inverse function.


A.


B.

C.

D.

13. Identify the vertical asymptotes of the function g(x).

$$g(x) = \frac{x^2 - 9x + 20}{x^2 - 8x + 15}$$

A.
$$x = 4, x = 5, x = 3$$
 only

B.
$$x = 5, x = 3$$
 only

C.
$$x = 5$$
 only

D.
$$x = 4$$
 only

E.
$$x = 3$$
 only

14. Evaluate: $(i^{62})^2$

- A. 1
- B. i
- C. -1
- D. -i
- E. 0

9. Suppose that f(x) is a polynomial with real coefficients and that 3+4i is a zero of f(x). Which of the expressions below must be a factor of f(x)?

A.
$$x$$

D.
$$x^2 + 25$$

B.
$$x^2 + 6x + 7$$

E.
$$x^2 - 6x + 25$$

C. x + 3

10. Perform the operation and choose the correct result: $(2+7i)^2$

A.
$$4 + 49i$$

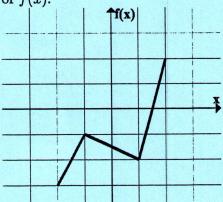
D.
$$4 + 14i$$

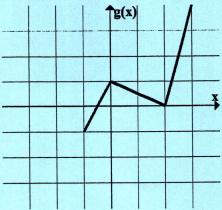
E.
$$-45$$

C.
$$-45 + 28i$$

11. Identify the horizontal asymptote of the function: $f(x) = \frac{6x + 14}{3x + 2}$

A.
$$y = 7$$


B.
$$x = 7$$


C.
$$y = 2$$

D.
$$x = 2$$

E.
$$y = -\frac{2}{3}$$

15. The graphs of two functions f(x) and g(x) are shown below. Express the equation for g(x) in terms of f(x).

A.
$$g(x) = f(x+1) + 2$$

B.
$$g(x) = f(x+1) - 2$$

C.
$$g(x) = f(x-1) + 2$$

D.
$$g(x) = f(x-1) - 2$$

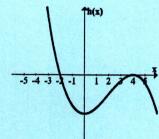
E.
$$g(x) = f(x+2) + 1$$

16. Use long or synthetic division to simplify the expression:

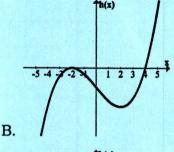
$$\frac{x^3 - 3x^2 + 3x - 1}{x - 1}$$

A.
$$x^2 - 2x + 1$$
, $x \neq 1$ B. $x^2 - 4x - 1 + \frac{2}{x-1}$ C. $x^2 - 4x - 1 + \frac{2}{x-1}$

B.
$$x^2 - 4x - 1 + \frac{2}{x-1}$$

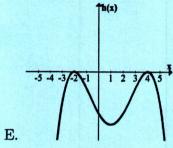

C.
$$x^2 - 4x - 1 + \frac{2}{x-1}$$

D.
$$x^2 - 3x + 3 + \frac{1}{x-1}$$


E.
$$x^2 + 2x - 3$$
, $x \neq 1$

- 17. Suppose that $h(x) = 15x^5 + x^4 + 5x^3 8x^2 + 10x + 14$. According to the rational zero test, which of the following is <u>not</u> a possible zero of h(x)?
 - A. 1
- B. $\frac{2}{3}$
- C. $\frac{8}{3}$
- D. $\frac{7}{5}$
- E. $\frac{14}{5}$

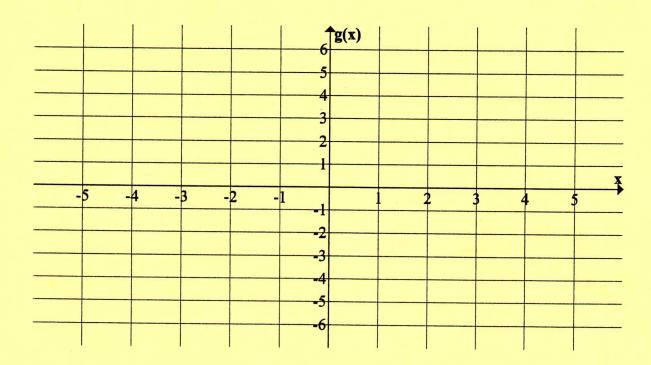
18. A polynomial h(x) has a zero at x = -2 with multiplicity 1 and a zero at x = 4 with multiplicity 2. Choose the graph which could be the graph of h(x).



A.

C.

D.


20. On the axes below, sketch the graph of a function g(x) with the following properties:

a. g(x) is increasing only on the interval $(-\infty, -2)$

b. g(x) is constant only on the interval (-2,1)

c. g(x) has only one x-intercept, and it is at x = -4

d. As $x \to \infty$, $g(x) \to 0$

Turn in your scantron and your free response to your TA. The worked-out solutions will be posted on Canvas after the test.

	T.A.	MAC 1147 — Fall 2019 — EXAM 2A Disc. Per Name	
		onor, I have neither given nor received unauthorized	
	UF ID ≠	Signature	
	YOU MUS	SHOW ALL WORK TO RECEIVE FULL O	CREDIT.
Free	response questions 19–2	are worth 4 points each.	
19.	A quadratic function	(x) has its vertex at the point $(1,27)$ and y -intercept	t 24.
	a. Write the standard	orm of $f(x)$.	
	Solution:		
	b. Find the x-intercept	of $f(x)$ and write them as points.	
	Solution:		
	c. What is the equati	of the axis of symmetry of $f(x)$?	
	Solution:		

TURN OVER FOR THE LAST PROBLEM.