Module 1 - Real and Complex Numbers
Progress Exam 1

1. Choose the smallest set of Real numbers that the number below belongs to.

$$
\sqrt{\frac{11}{0}}
$$

A. Irrational
B. Integer
C. Whole
D. Rational
E. Not a Real number
2. Simplify the expression below and choose the interval the simplification is contained within.

$$
19-20 \div 18 * 9-(4 * 10)
$$

$\square$
A. $[-27,-20]$
B. $[55,60]$
C. $[45,54]$
D. $[245,251]$
E. $[-34,-29]$
3. Choose the smallest set of Complex numbers that the number below belongs to.

$$
\frac{\sqrt{60}}{17}+8 i^{2}
$$

A. Nonreal Complex
B. Not a Complex Number
C. Irrational
D. Rational
E. Pure Imaginary

Module 1 - Real and Complex Numbers
Progress Exam 1
4. Simplify the expression below into the form $a+b i$. Then, choose the intervals that $a$ and $b$ belong to.

$$
(6-10 i)(-3+5 i)
$$

$a=\square \quad b=\square$
A. $a \in[27,36]$ and $b \in[53,66]$
B. $a \in[-72,-63]$ and $b \in[-4,6]$
C. $a \in[-72,-63]$ and $b \in[-4,6]$
D. $a \in[27,36]$ and $b \in[-68,-58]$
E. $a \in[-22,-10]$ and $b \in[-52,-48]$
5. Simplify the expression below into the form $a+b i$. Then, choose the intervals that $a$ and $b$ belong to.

$$
\frac{54-11 i}{-2+4 i}
$$

$a=\square \quad b=\square$
A. $a \in[-28,-21]$ and $b \in[-6,-2]$
B. $a \in[-4,2]$ and $b \in[9,14]$
C. $a \in[-13,-6]$ and $b \in[-13,-7]$
D. $a \in[-13,-6]$ and $b \in[-197,-189]$
E. $a \in[-153,-151]$ and $b \in[-13,-7]$
6. First, find the equation of the line containing the two points below. Then, write the equation as $y=m x+b$ and choose the intervals that contain $m$ and $b$.

$$
(6,-4) \text { and }(2,5)
$$


A. $m \in[-5,-2]$ and $b \in[-9.96,-8.71]$
B. $m \in[-5,0]$ and $b \in[2.76,4.17]$
C. $m \in[-3,-1]$ and $b \in[9.04,10.42]$
D. $m \in[-2,5]$ and $b \in[0.01,0.56]$
E. $m \in[-3,1]$ and $b \in[-10.34,-9.98]$
7. Write the equation of the line in the graph below in the form $A x+B y=C$. Then, choose the intervals that contain $A, B$, and $C$.


$$
A=\square \quad B=\square=\square
$$

A. $A \in[4.73,5.32], \quad B \in[-3.69,-1.76]$, and $C \in[-3.1,-1.3]$
B. $A \in[-2.38,-1.52], \quad B \in[-6.13,-4.39]$, and $C \in[-8.3,-4.5]$
C. $A \in[1.47,2.38], \quad B \in[3.21,6.14]$, and $C \in[1.7,5.4]$
D. $A \in[2.28,2.92], \quad B \in[-1.8,-0.93]$, and $C \in[-3.1,-1.3]$
E. $A \in[0.04,0.49], \quad B \in[0.47,2.13]$, and $C \in[-0.1,3]$
8. Find the equation of the line described below. Write the linear equation as $y=m x+b$ and choose the intervals that contain $m$ and $b$.

Perpendicular to $5 x-4 y=3$ and passing through the point $(5,-9)$.

$$
m=\square \quad b=\square
$$

A. $m \in[-1,2]$ and $b \in[-2,2]$
B. $m \in[-3,2]$ and $b \in[4,7]$
C. $m \in[-2,-1.1]$ and $b \in[-6,-2]$
D. $m \in[-1.2,-0.2]$ and $b \in[-6,-4]$
E. $m \in[0.7,1.7]$ and $b \in[-15,-12]$
9. Solve the equation below. Then, choose the interval that contains the solution.

$$
-6(-9 x-2)=-13(-8 x+3)
$$

$\square$
A. $x \in[0.9,1.18]$
B. $x \in[0.29,0.51]$
C. $x \in[0.06,0.27]$
D. $x \in[-0.55,-0.48]$
E. There are no Real solutions.
10. Solve the linear equation below. Then, choose the interval that contains the solution.

$$
\frac{-3 x-5}{2}-\frac{-7 x+8}{4}=\frac{8 x+6}{3}
$$

$$
x=\square
$$

A. $x \in[-1.24,-0.79]$
B. $x \in[-8.09,-7.53]$
C. $x \in[-3,-2.66]$
D. $x \in[-1.91,-1.6]$
E. There are no Real solutions.
11. Using an interval or intervals, describe all the $x$-values within or including a distance of the given values.

No more than 7 units from the number 4.
A. $(3,11)$
B. $[3,11]$
C. $(-3,11)$
D. $[-3,11]$
12. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$
a=\square \quad 5 x+4 \leq 6 x+6
$$

A. $(-\infty, a]$, where $a \in[1.1,4.7]$
B. $[a, \infty)$, where $a \in[-2.4,-0.5]$
C. $[a, \infty)$, where $a \in[1,3]$
D. $(-\infty, a]$, where $a \in[-5,0]$
E. $(-\infty, \infty)$
13. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$
a=\square \quad \frac{x}{3}+\frac{7}{8}>\frac{3 x}{2}-\frac{8}{3}
$$

A. $(a, \infty)$, where $a \in[1,6]$
B. $(a, \infty)$, where $a \in[-8,0]$
C. $(-\infty, a)$, where $a \in[2,4]$
D. $(-\infty, a)$, where $a \in[-7,-2]$
E. There is no solution to the inequality.
14. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$
\begin{array}{cc}
-6+3 x>6 x & \text { or } \\
a-3 x<6 x \\
a=\square & b=\square
\end{array}
$$

A. $(-\infty, a) \cup(b, \infty)$, where $a \in[-2.7,-1.63]$ and $b \in[0.7,1.9]$
B. $(-\infty, a] \cup[b, \infty)$, where $a \in[-3.8,-1.8]$ and $b \in[0.84,1.25]$
C. $(-\infty, a] \cup[b, \infty)$, where $a \in[-1.9,0.3]$ and $b \in[1.29,2.23]$
D. $(-\infty, a) \cup(b, \infty)$, where $a \in[-1.36,1.11]$ and $b \in[1.4,4.7]$
E. $(-\infty, \infty)$
15. Solve the linear inequality below. Then, choose the constant and interval combination that describes the solution set.

$$
\begin{aligned}
& -5+8 x<\frac{75 x+3}{9} \leq-4+5 x \\
& a=\square \quad b=\square
\end{aligned}
$$

A. $(a, b]$, where $a \in[-2,2]$ and $b \in[12,17]$
B. $[a, b)$, where $a \in[0,3]$ and $b \in[11,17]$
C. $(a, b]$, where $a \in[-19,-11]$ and $b \in[-9,0]$
D. $[a, b)$, where $a \in[-19,-11]$ and $b \in[-3,3]$
E. There is no solution to the inequality.
16. Write the equation of the graph presented below in the form $f(x)=a x^{2}+b x+c$, assuming $a=1$ or $a=-1$. Then, choose the intervals that $a, b$, and $c$ belong to.


$$
a=\square \quad c=\square \quad c=\square
$$

A. $a \in[0,2], \quad b \in[6,9]$, and $c \in[-25,-20]$
B. $a \in[-3,0], \quad b \in[-10,-5]$, and $c \in[-25,-20]$
C. $a \in[-3,0], \quad b \in[6,9]$, and $c \in[-11,-2]$
D. $a \in[-2,0], \quad b \in[6,9]$, and $c \in[-25,-20]$
E. $a \in[-3,0], \quad b \in[-10,-5]$, and $c \in[-11,-2]$
17. Graph the equation $f(x)=(x-4)^{2}+11$.
A.

C.


B.

E.

D.
18. Factor the quadratic below. Then, choose the intervals that contain the constants in the form $(a x+b)(c x+d) ; b \leq d$.

$$
a=\square \quad b=\square \quad c=\square \quad d x^{2}-48 x+9
$$

A. $a \in[14,17.5], \quad b \in[-3.5,-2.5], \quad c \in[3,5.5]$, and $d \in[-3.5,-1.5]$
B. $a \in[0.5,1.5], \quad b \in[2,3.5], \quad c \in[63.5,64.5]$, and $d \in[1.5,4.5]$
C. $a \in[3.5,6], \quad b \in[-3.5,-2.5], \quad c \in[15.5,17]$, and $d \in[-3.5,-1.5]$
D. $a \in[0.5,1.5], \quad b \in[-3.5,-2.5], \quad c \in[63.5,64.5]$, and $d \in[-3.5,-1.5]$
E. $a \in[7,8.5], \quad b \in[-3.5,-2.5], \quad c \in[7.5,8.5]$, and $d \in[-3.5,-1.5]$
19. Solve the quadratic equation below. Then, choose the intervals that the solutions $x_{1}$ and $x_{2}$ belong to, with $z_{1} \leq z_{2}$. $324 x^{2}-9=0$

$$
x_{1}=\square \quad x_{2}=\square
$$

A. $x_{1} \in[-0.04,0]$ and $x_{2} \in[2.94,3.08]$
B. $x_{1} \in[-3,-2.98]$ and $x_{2} \in[-0.02,0.03]$
C. $x_{1} \in[-0.06,-0.03]$ and $x_{2} \in[0.44,0.54]$
D. $x_{1} \in[-0.19,-0.06]$ and $x_{2} \in[0.14,0.23]$
E. $x_{1} \in[-0.54,-0.44]$ and $x_{2} \in[0.03,0.13]$
20. Solve the quadratic equation below. Then, choose the intervals that the solutions belong to, with $x_{1} \leq x_{2}$ (if they exist).

$$
\begin{gathered}
-7 x^{2}-7 x+2=0 \\
x_{1}=\square \quad x_{2}=\square
\end{gathered}
$$

A. $x_{1} \in[-1.61,-1.17]$ and $x_{2} \in[-0.16,0.69]$
B. $x_{1} \in[-8.76,-8.57]$ and $x_{2} \in[1.47,1.96]$
C. $x_{1} \in[-1.77,-1.59]$ and $x_{2} \in[8.48,9.13]$
D. $x_{1} \in[-0.45,0.51]$ and $x_{2} \in[0.72,1.24]$
E. There are no Real solutions.

