Review 4: L23 - L30

1. Find the gradient vector field $\nabla \varphi$ of:
(a) $\varphi(x, y)=\tan ^{-1}(y / x)$;
(b) $\varphi(x, y, z)=x \sqrt{y^{2}+z^{2}}$.
2. (a) Find the gradient vector field \mathbf{F} of $\varphi(x, y, z)=k\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}(k>0)$.
(b) Is \mathbf{F} a radial vector field?
(c) Is it directed inward towards the origin or outward from the origin?
(d) What is the magnitude of the vectors?
3. Verify whether a given vector field is conservative on the given domain D and, if so, find a potential function φ.
(a) $\mathbf{F}=\left\langle\frac{1}{y},-\frac{x}{y^{2}}\right\rangle$, where D is a simply connected domain in \mathbb{R}^{2} that lies above the x-axis.
(b) $\mathbf{F}=\left\langle 2 x y, x^{2}+2 y z^{3}, 3 y^{2} z^{2}+1\right\rangle$, where $D=\mathbb{R}^{3}$.
(c) $\mathbf{F}=\left\langle 2 x \cos (y), x^{2} \sin (y)\right\rangle$, where $D=\mathbb{R}^{2}$.
4. Evaluate $\int_{C}\left(x^{2}-y^{2}+z\right) d s$, where the curve C is one turn of the helix $\mathbf{r}(t)=\langle a \cos t, a \sin t, b t\rangle, 0 \leq t \leq 2 \pi(a, b>0)$.
5. Evaluate the work done by the force field $\mathbf{F}=\langle x+y z, 2 x y, z\rangle$ in moving a point object along the line segment from the point $(1,0,1)$ to the point $(2,3,1)$.
6. Evaluate the work done by the force $\mathbf{F}=(y+1, x)$ in moving a particle from the point $(-2,0)$ to the point $(2,0)$ along a path C :
(a) C is an upper half of an ellipse $\frac{x^{2}}{2^{2}}+\frac{y^{2}}{3^{2}}=1$ traversed clockwise;
(b) C is a line segment from $(-2,0)$ to $(2,0)$.

Explain why the answers here for the two different parts are the same.
7. The curve C is given by the parametric equations $x=t \cos t, y=t \sin t, z=t \quad(t \geq 0)$.
(a) Describe the curve.
(b) Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathbf{d r}$, where $\mathbf{F}(\mathbf{r})=\mathbf{r}$ and $0 \leq t \leq 2 \pi$.
8. (a) Show that the vector field $\mathbf{F}=\left\langle x\left(1+y^{2}\right), x^{2} y\right\rangle$ is conservative in \mathbb{R}^{2} and find the potential function φ.
(b) Evaluate $\int_{C} \mathbf{F} \cdot \mathbf{d r}$, where C is an arbitrary smooth curve from the point $(-1,3)$ to the point $(2,1)$.
9. Given the vector field $\mathbf{F}=\left\langle 2 x y, x^{2}+2 y z, y^{2}\right\rangle$.
(a) Determine whether the vector field is conservative in \mathbb{R}^{3}. If so,
(b) Find a function ϕ such that $\mathbf{F}=\nabla \phi$.
(c) What is the value of the integral of the vector field \mathbf{F} along any closed piecewise smooth curve in \mathbb{R}^{3} ?
10. Consider the vector field $\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$.
(a) Show that the components of \mathbf{F} have continuous partial derivatives on the domain $E=\mathbb{R}^{2} \backslash\{(0,0)\}$ and curl $\mathbf{F}=\mathbf{0}$ on E .
(b) Evaluate $\oint_{C} \mathbf{F} \cdot \mathbf{d r}$, where C is a unit circle oriented counterclockwise. Is the vector field F conservative on E?
(c) Does (b) contradict to part (a)? Explain please.
(d) What is the value of the integral $\oint_{C} \mathbf{F} \cdot \mathbf{d r}$ over a simple closed curve that neither passes through the origin nor encloses the origin? Justify please.
11. Determine the mass of the triangular plate whose vertices are $(1,0,0),(0,2,0),(0,0,2)$ if the mass density $\sigma(x, y, z)=x y$.
12. Find the surface area of the part of a paraboloid $z=1-x^{2}-y^{2}$ that lies above the xy-plane.
13. Evaluate the surface integral $\iint_{S} x^{2} d S$, where S is the part of a cylinder (top and bottom are not included): $x^{2}+y^{2}=4,0 \leq z \leq 1$.
(a) Give a parameterization of the surface $\mathbf{r}=\mathbf{r}(u, v),(u, v) \in D$
(b) Calculate $d S=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| d u d v$.
(c) Compute $\iint_{S} x^{2} d S$.
14. Evaluate the line integral by two methods: directly and by using Green’s Theorem. $\int_{C}(x-y) d x+(x+y) d y$, where C is a circle with radius 2 and center at the origin oriented counterclockwise.
15. Use the line integral to find the area of the region in the first quadrant bounded by the astroid $\sqrt{\frac{|x|}{a}}+\sqrt{\frac{|y|}{b}}=1 \quad(a, b>0)$ and the coordinate axes. (Hint: the astroid in the first quadrant can be parameterized as $\mathbf{r}(t)=\left\langle a \cos ^{4} t, b \sin ^{4} t\right\rangle, \quad 0 \leq t \leq \pi / 2$.)
16. Use Green's Theorem to evaluate $\oint_{C} \mathbf{F} \cdot \mathbf{d r}$, where $\mathbf{F}=\left\langle e^{x}+x^{2} y, e^{y}-x y^{2}\right\rangle$ and C is the circle $x^{2}+y^{2}=25$ with clockwise orientation.
17. Find the flux of the vector field $\mathbf{F}=\left\langle y,-x, z^{2}\right\rangle$ across the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the xy-plane and oriented so that the z component of the normal vector is positive.
18. Find the flux of the vector field $\mathbf{F}=\left\langle x z, y z, 2 z^{2}\right\rangle$ across the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies beneath the plane $z=2$ in the first octant and oriented so that the z component of the normal vector is positive.
19. Evaluate the outward flux of the vector field $\mathbf{F}=\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle$ across the boundary of the solid enclosed by the cylinder $x^{2}+y^{2}=1$ and the planes $z=0$ and $z=1$. (Hint: use the Divergence Theorem.)
20. Evaluate the line integral of the vector field $\mathbf{F}=\langle x y, y z, x z\rangle$ along the curve of intersection of the cylinder $x^{2}+y^{2}=1$ with the plane $x+y+z=1$ if the curve is oriented counterclockwise as viewed from above. (Hint: use Stokes’ Theorem)
21. Let $\mathbf{F}=\langle y,-x, z\rangle$ and let S be the part of the sphere $x^{2}+y^{2}+z^{2}=2$ oriented upward that lies above the plane $z=1$. Evaluate directly the following:
(a) the flux of the curl \mathbf{F} across the surface S;
(b) the flux of the curl \mathbf{F} across the surface S_{1}, which is the projection of S onto the plane $z=1$, with the upward orientation;
(c) the circulation of the vector field \mathbf{F} along the boundary of S, the curve ∂S (or equivalently, across the boundary of S_{1}, which is the same curve ∂S) if the orientation of ∂S is consistent with the orientation of S (or S_{1}).
(d) Which theorem explains that answers obtained in parts (a) - (c) are the same?
22. Which of the vector fields below are incompressible (or source free) on the given domain?
(a) $\mathbf{F}=\left\langle x y, x-y^{2}, y z\right\rangle$ in \mathbb{R}^{3}
(b) $\mathbf{F}=\left\langle y^{2}+z^{2}, x^{2}+z^{2}, x^{2}+y^{2}\right\rangle$ in \mathbb{R}^{3}
(c) $\mathbf{F}=\frac{\mathbf{r}}{|\mathbf{r}|}, \mathbf{r}=\langle x, y, z\rangle$ in $\mathbb{R}^{3} \backslash \mathbf{0}$
(d) $\mathbf{F}=\langle a, b, c\rangle$ in $\mathbb{R}^{3}(a, b, c \in \mathbb{R})$
23. Which of the vector fields in question 22 are irrotational on the given domains?
24. Taking into consideration the symbolic notations:
curl $\mathbf{F}=\nabla \times \mathbf{F}, \operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}$, where $\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle$,
determine which of the below (under certain conditions on the functions) are true, which are not true in general, and which do not make sense:
(a) $\nabla \cdot(\nabla \times \mathbf{F})=0$
(b) $\nabla \times(\nabla \cdot \mathbf{F})=\mathbf{0}$
(c) $\nabla \cdot(\nabla \varphi)=0$
(d) $\nabla \cdot(\nabla \phi)=\nabla^{2} \phi$, where $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ is the Laplace operator
(e) $\nabla \times(\nabla \phi)=\mathbf{0}$
(f) $\nabla \times(\nabla \times \mathbf{F})=\mathbf{0}$
(g) $\nabla \cdot(\nabla \cdot \mathbf{F})=0$
(h) $\nabla(\nabla \cdot \mathbf{F})=\mathbf{0}$

