MAC2313, Calculus III Final Exam Review

1. Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$. Determine whether the vector filed \vec{F} is conservative and find its potential function f if it is conservative.

(1)
$$\vec{F} = \langle y, x + z, y \rangle$$

(2)
$$\vec{F} = \langle 4xe^z, \cos(y), 2x^2e^z \rangle$$

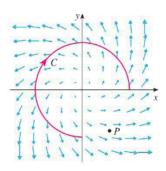
(3)
$$\vec{F} = \langle xe^{2x}, ye^{2z}, ze^{2y} \rangle$$

(4)
$$\vec{F} = \left\langle \frac{y}{1+x^2}, \arctan(x), 2z \right\rangle$$

2. A vector field \vec{F} , a curve C and a point P are shown.

(1) Is
$$\int_C \vec{F} \cdot d\vec{r}$$
 positive, negative, or zero?

(2) Is div \vec{F} at P positive, negative, or zero?



3. Evaluate the line integral:

(1) $\int_C y dx + (x+y^2) dy$ if C is the ellipse $4x^2 + 9y^2 = 36$ with counterclockwise orientation.

(2) $\int_C (x^2 + y^2 + z^2) ds$ if C is the the curve $\vec{r}(t) = \langle t, \cos(2t), \sin(2t) \rangle$, $0 \le t \le 2\pi$.

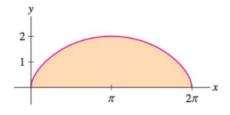
(3) $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = \langle (1+xy)e^{xy}, x^2e^{xy} \rangle$ and C is a curve moving from (1,0) to (0,2).

(4) $\int_C (y + e^{\sqrt{x}}) dx + (2x + \cos y^2) dy$, where C is the positively oriented boundary curve of the region enclosed by $y = x^2$ and $x = y^2$.

1

(5) $\int_C \vec{F} \cdot d\vec{r}$, where $\vec{F} = \langle x + yz, 2yz, x - y \rangle$ and C is the intersection of $x^2 + y^2 = 4$ and x + y + z = 1 with counterclockwise orientation when viewed from above.

- 4. Evaluate the surface integral:
- (1) $\iint_S (x^2z + y^2z)dS$, where S is the part of the plane z = 4 + x + y that lies inside the cylinder $x^2 + y^2 = 4$.
- (2) $\iint_S \vec{F} \cdot d\vec{S}$, where $\vec{F} = \langle xz, -2y, 3x \rangle$ and S is the sphere $x^2 + y^2 + z^2 = 4$ with outward orientation.
- (3) $\iint_S \vec{F} \cdot d\vec{S}$, where $\vec{F} = \langle x^2, xy, z \rangle$ and S is the part of paraboloid $z = x^2 + y^2$ below the plane z = 1 with upward orientation.
- 5. Find the area of the region between the x-axis and the cycloid $x=t-\sin t,\ y=1-\cos t,\ 0\leq t\leq 2\pi.$



- 6. Consider the parametric surface S: $\vec{r}(u,v) = \langle v^2, -uv, u^2 \rangle$, $0 \le u \le 3$, $-3 \le v \le 3$.
- (1) Find an equation of the tangent plane to the surface S at the point (4,-2,1).
- (2) Set up an integral for the surface area of S.
- 7. Is there a vector field \vec{G} on \mathbb{R}^3 such that $\operatorname{curl} \vec{G} = \langle x, y, z \rangle$?

- 8. Find the work done by the force field $\vec{F} = \langle z, x, y \rangle$ in moving a particle from the point (3,0,0) to the point $(0,\pi/2,3)$ along
- (1) a straight line

- (2) the helix $x = 3\cos t$, y = t, $z = 3\sin t$
- 9. Let $\vec{F} = \langle x^2 y^2, 2xy \rangle$ be the velocity field of a two-dimensional fluid flow. If D is the region in the first quadrant bounded by $y = \sqrt{1 x^2}$, x = 0, and y = 0 with its boundary ∂D oriented counterclockwise, find:
- (1) the circulation of \vec{F} around the curve ∂D
- (2) the flux of \vec{F} through the curve ∂D
- 10. Compute the flux of the vector field \vec{F} across the given surface.
- (1) $\vec{F} = \langle \sin(y), \sin(z), yz \rangle$; S is the rectangular surface $0 \le y \le 2$, $0 \le z \le 3$ in the yz-plane with a normal vector pointing in the negative x-direction
- (2) $\vec{F} = \langle -x, -y, z^3 \rangle$; S is the part of the cone $z = \sqrt{x^2 + y^2}$ between the planes z = 1 and z = 3 with downward orientation
- (3) $\vec{F} = \langle 2x^3 + y^3, y^3 + z^3, 3y^2z \rangle$; S is the surface of the solid bounded by paraboloid $z = 1 x^2 y^2$ and the xy-plane.
- 11. True or False:
- (1) If $\vec{F} = \langle P, Q \rangle$ and $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ in an open region D, then \vec{F} is conservative.

(2)
$$\int_{-C} f(x,y) ds = -\int_{C} f(x,y) ds$$
.

(3)
$$\int_{-C} \vec{F} \cdot d\vec{r} = -\int_{C} \vec{F} \cdot d\vec{r}.$$

- (4) If S is a sphere and \vec{F} is a constant vector field, then $\iint_{S} \vec{F} \cdot d\vec{S} = 0$.
- (5) The area of the region bounded by the positively oriented, piecewise smooth, simple closed curve C is $\oint_C y \, dx$.
- (6) The flux of curl \vec{F} through every oriented surface is zero.