MAC2313, Calculus III
 Final Exam Review (Lectures 27-34)

The formula sheet (page L34-10) will be provided on the test. The review below is not designed to be comprehensive, but to be representative of the topics covered on the exam.

1. Find $\operatorname{div} \vec{F}$ and $\operatorname{curl} \vec{F}$. Determine whether the vector filed \vec{F} is conservative and find its potential function f if it is conservative.
(1) $\vec{F}=\langle y, x+z, y\rangle$
(2) $\vec{F}=\left\langle 4 x e^{z}, \cos (y), 2 x^{2} e^{z}\right\rangle$
(3) $\vec{F}=\left\langle x e^{2 x}, y e^{2 z}, z e^{2 y}\right\rangle$
(4) $\vec{F}=\left\langle\frac{y}{1+x^{2}}, \arctan (x), 2 z\right\rangle$
2. A vector field \vec{F}, a curve C and a point P are shown.
(1) Is $\int_{C} \vec{F} \cdot d \vec{r}$ positive, negative, or zero?
(2) Is div \vec{F} at P positive, negative, or zero?

3. Evaluate the line integral:
(1) $\int_{C} y d x+\left(x+y^{2}\right) d y$ if C is the ellipse $4 x^{2}+9 y^{2}=36$ with counterclockwise orientation.
(2) $\int_{C}\left(x^{2}+y^{2}+z^{2}\right) d s$ if C is the the curve $\vec{r}(t)=\langle t, \cos (2 t), \sin (2 t)\rangle, 0 \leq$ $t \leq 2 \pi$.
(3) $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=\left\langle(1+x y) e^{x y}, x^{2} e^{x y}\right\rangle$ and C is a curve moving from $(1,0)$ to $(0,2)$.
(4) $\int_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$, where C is the positively oriented boundary curve of the region enclosed by $y=x^{2}$ and $x=y^{2}$.
(5) $\int_{C} \vec{F} \cdot d \vec{r}$, where $\vec{F}=\langle x+y z, 2 y z, x-y\rangle$ and C is the intersection of $x^{2}+y^{2}=4$ and $x+y+z=1$ with counterclockwise orientation when viewed from above.
4. Evaluate the surface integral:
(1) $\iint_{S}\left(x^{2} z+y^{2} z\right) d S$, where S is the part of the plane $z=4+x+y$ that lies inside the cylinder $x^{2}+y^{2}=4$.
(2) $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=\langle x z,-2 y, 3 x\rangle$ and S is the sphere $x^{2}+y^{2}+z^{2}=4$ with outward orientation.
(3) $\iint_{S} \vec{F} \cdot d \vec{S}$, where $\vec{F}=\left\langle x^{2}, x y, z\right\rangle$ and S is the part of paraboloid $z=x^{2}+y^{2}$ below the plane $z=1$ with upward orientation.
5. Find the area of the region between the x-axis and the cycloid $x=t-$ $\sin t, y=1-\cos t, 0 \leq t \leq 2 \pi$.

6. Consider the parametric surface $S: \vec{r}(u, v)=\left\langle v^{2},-u v, u^{2}\right\rangle, 0 \leq u \leq$ $3,-3 \leq v \leq 3$.
(1) Find an equation of the tangent plane to the surface S at the point $(4,-2,1)$.
(2) Set up an integral for the surface area of S.
7. Is there a vector field \vec{G} on \mathbb{R}^{3} such that $\operatorname{curl} \vec{G}=\langle x, y, z\rangle$?
8. Find the work done by the force field $\vec{F}=\langle z, x, y\rangle$ in moving a particle from the point $(3,0,0)$ to the point $(0, \pi / 2,3)$ along
(1) a straight line
(2) the helix $x=3 \cos t, y=t, z=3 \sin t$
9. Let $\vec{F}=\left\langle x^{2}-y^{2}, 2 x y\right\rangle$ be the velocity field of a two-dimensional fluid flow. If D is the region in the first quadrant bounded by $y=\sqrt{1-x^{2}}, x=0$, and $y=0$ with its boundary ∂D oriented counterclockwise, find:
(1) the circulation of \vec{F} around the curve ∂D
(2) the flux of \vec{F} through the curve ∂D
10. Compute the flux of the vector field \vec{F} across the given surface.
(1) $\vec{F}=\langle\sin (y), \sin (z), y z\rangle$; S is the rectangular surface $0 \leq y \leq 2,0 \leq z \leq 3$ in the $y z$-plane with a normal vector pointing in the negative x-direction
(2) $\vec{F}=\left\langle-x,-y, z^{3}\right\rangle ; S$ is the part of the cone $z=\sqrt{x^{2}+y^{2}}$ between the planes $z=1$ and $z=3$ with downward orientation
(3) $\vec{F}=\left\langle 2 x^{3}+y^{3}, y^{3}+z^{3}, 3 y^{2} z\right\rangle ; S$ is the surface of the solid bounded by paraboloid $z=1-x^{2}-y^{2}$ and the $x y$-plane.
11. True or False:
(1) If $\vec{F}=\langle P, Q\rangle$ and $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$ in an open region D, then \vec{F} is conservative.
(2) $\int_{-C} f(x, y) d s=-\int_{C} f(x, y) d s$.
(3) $\int_{-C} \vec{F} \cdot d \vec{r}=-\int_{C} \vec{F} \cdot d \vec{r}$.
(4) If S is a sphere and \vec{F} is a constant vector field, then $\iint_{S} \vec{F} \cdot d \vec{S}=0$.
(5) The area of the region bounded by the positively oriented, piecewise smooth, simple closed curve C is $\oint_{C} y d x$.
(6) The flux of curl \vec{F} through every oriented surface is zero.
