MAC 2233 Fall 2019

Final Exam A

- A. Sign your bubble sheet on the back at the bottom in ink.
- B. In pencil, write and encode in the spaces indicated:
 - 1) Name (last name, first initial, middle initial)
 - 2) UF ID Number
 - 3) Section Number
- C. Under "special codes", code in the test ID number 4, 1.

1	2	3	ullet	5	6	7	8	9	0
ullet	2	3	4	5	6	7	8	9	0

- D. At the top right of your answer sheet, for "Test Form Code", encode A.
 - B C D E
- E. 1) This test consists of 20 five-point multiple choice questions.
 - 2) The time allowed is 120 minutes.
 - 3) You may write on the test.
 - 4) Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.

F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.

- G. When you are finished:
 - 1) Before turning in your test, check for transcribing errors. Any mistakes you leave in are there to stay.
 - 2) Bring your test, scratch paper, bubble sheet, and any tearoff sheets to your discussion leader or proctor to turn them in. Be prepared to show your UF ID card.
 - 3) Answers will be posted in CANVAS after the test.

Multiple Choice are worth 5 points each.

- 1. If $f(x) = \frac{x^4}{4} \frac{x^3}{3}$, the graph of f is both **decreasing** and **concave up** on which of the following intervals?
 - A. (0, 1)B. $\left(-\infty, \frac{2}{3}\right)$ C. $\left(-\infty, 0\right) \cup \left(\frac{2}{3}, \infty\right)$ D. $\left(-\infty, 0\right) \cup \left(\frac{2}{3}, 1\right)$ E. $(-\infty, 0)$

2. Find the absolute maximum and minimum values of $f(x) = \frac{8x}{x^2 + 1}$ on [0, 2].

A. 4,0 B. 4,-4 C.
$$\frac{16}{5}$$
,-4 D. $\frac{16}{5}$,0 E. 4, $\frac{16}{5}$

- 3. The demand and cost functions for a certain product are $p(x) = 750 0.5x^2$ and C(x) = 150x + 37,500. Find the production level x that will yield maximum profit. What price should be charged for the product?
 - A. x = 20; price is \$295 B. x = 15; price is \$638 C. x = 10; price is \$700

D.
$$x = 15$$
; price is \$480 E. $x = 20$; price is \$550

4. Evaluate
$$\int_{1}^{e^{3}} \frac{\sqrt{1 + \ln(x)}}{x} dx$$
.
A. 3 B. $\frac{14}{3}$ C. $\frac{16}{3}$ D. $\frac{3}{e^{2}}$ E. 7

5. Which graph best represents $f(x) = xe^x$? Note: $f'(x) = e^x(x+1)$ and $f''(x) = e^x(x+2)$.

6. Find the value of K so that the function $f(x) = \begin{cases} 6x + K & x \le \frac{1}{2} \\ \frac{6x^2 - 3x}{2x^2 + x - 1} & x > \frac{1}{2} \end{cases}$ is continuous at $x = \frac{1}{2}$. A. -1 B. 0 C. 2 D. -2 E. 1

7. Evaluate
$$\lim_{x \to -3} \frac{2 - \sqrt{1 - x}}{x + 3}$$
.
A. $\frac{1}{4}$
B. 4
C. 1
D. 0

E. The limit does not exist.

8. The horizontal tangent lines of $f(x) = \frac{\sqrt{2x-1}}{x}$ occur at which values of x?

A. $\frac{1}{2}$ onlyB. $\frac{2}{3}$ onlyC. 1 onlyD. $\frac{1}{2}$ and 1 onlyE. $\frac{1}{2}$ and $\frac{2}{3}$ only

9. Write the equation of the tangent line to $f(x) = \frac{x^4 - 4}{x^2}$ at x = 2.

- A. y = 3B. y = 8x - 13C. y = 5x - 13
- D. y = 8x 7 E. y = 5x 7
- 10. Find the slope of the tangent line to $y^2 \ln x = 3y 2$ at the point (e, 1).
 - A. $2 + \frac{1}{e}$ B. $\frac{1}{e}$ C. $\frac{e}{2}$ D. e 1 E. $\frac{2}{e} 3$

11. If $f(x) = \begin{cases} -1 & x \le 0\\ 3-x & 0 < x < 2 \end{cases}$, then which of the following statements is/are true? $\frac{1}{3-x} & x > 2 \end{cases}$ I. $\lim_{x \to 3^+} f(x) = -\infty$ II. f(x) is continuous at x = 0. III. $\lim_{x \to 0^+} f(x) = f(0)$. IV. f(x) can be made continuous at x = 2 by defining f(2) = 1. A. II and III B. I and II C. I and IV D. I, III, and IV E. II and IV 12. If $f(x) = \frac{x^2 - 3x - 10}{x^2 + 2x}$, let $p = \lim_{x \to \infty} f(x)$ and let $q = \lim_{x \to 0^+} f(x)$. Then A. $p = -\infty$ and $q = +\infty$ B. $p = +\infty$ and q = -5C. p = 1 and $q = +\infty$ D. p = 1 and $q = -\infty$ E. $p = +\infty$ and q = 0

13. The acceleration of an object moving in a straight line is given by a(t) = 6t - 2. If the initial velocity of the object is 3 feet per second and the position of the object at t = 1 second is 5 feet, find the position of the object at t = 2 seconds.

A. 10 feet	B. 12 feet	C. 9 feet	D. 11 feet	E. 8 feet
------------	------------	-----------	----------------------	-----------

- 14. If $f(x) = \ln x$ and $g(x) = \frac{e^x}{e^x 2}$, find $(g \circ f)(x)$ and its domain. Consider the domain of the individual functions as necessary. A. $(g \circ f)(x) = \frac{x}{x - 2}$ domain: $(-\infty, 2) \cup (2, \infty)$ B. $(g \circ f)(x) = x - \ln(e^x - 2)$ domain: $(0, \ln 2) \cup (\ln 2, \infty)$ C. $(g \circ f)(x) = \frac{e^x \ln x}{e^x - 2}$ domain: $(0, \ln 2) \cup (\ln 2, \infty)$ D. $(g \circ f)(x) = x - \ln(e^x - 2)$ domain: $(\ln 2, \infty)$ E. $(g \circ f)(x) = \frac{x}{x - 2}$ domain: $(0, 2) \cup (2, \infty)$
- 15. A spherical balloon is inflated with a gas at a rate of 20 ft³/min. How fast is the radius of the balloon changing with the radius is 3 feet? (Recall: $V = \frac{4}{3}\pi r^3$.)
 - A. $\frac{5}{9\pi}$ ft/min D. $\frac{20}{9\pi}$ ft/min E. $\frac{5\pi}{9}$ ft/min E. $\frac{5\pi}{9}$ ft/min

MAC 2233 — Fall 2019 — Final Exam A

- 16. Find the slope of the tangent line to $f(x) = x^{4x}$ at x = e.
 - A. $4e^{4e-1}$ B. 8 C. $5e^{4e}$ D. 4 E. $8e^{4e}$
- 17. The graph of the **Second Derivative**, f''(x), of a continuus function is sketched below:

Which of the following statements is/are true?

- I. According to the Second Derivative Test, if f'(1) = 0, then f(x) has a relative minimum at x = 1.
- II. f(x) is concave down on the interval $(-\infty, -1)$ only.
- III. f(x) has inflection points at both x = -1 and x = 2.
- A. II onlyB. I and II onlyC. II and III onlyD. I and III onlyE. I, II and III

18. Evaluate
$$\int \frac{x}{\sqrt[3]{3x^2+1}} dx$$
.
A. $\frac{1}{9(3x^2+1)^{4/3}} + C$ B. $9(3x^2+1)^{2/3} + C$ C. $\frac{(3x^2+1)^{2/3}}{4} + C$
D. $4\ln(3x^2+1) + C$ E. $\frac{\ln(3x^2+1)}{6} + C$

19. The slope of the curve y = f(x) at any point is $\frac{(x-2)^2}{x}$. If the curve passes through the point (1, 1/2), find f(x).

A.
$$\frac{1}{2}x^2 + 4\ln|x|$$

B. $\frac{1}{2}x^2 - 4x + 4\ln|x| + 4$
C. $\frac{1}{2}x^2 - 4x + 4\ln|x| - \frac{1}{2}$
D. $\frac{1}{2}x^2 - 4x + \ln|4x| + 4$
E. $2x^2 - 4x + 4\ln|x| + \frac{5}{2}$

20. Evaluate $\lim_{h \to 0} \frac{\frac{2}{(x+h)^5} - \frac{2}{x^5}}{h}$. Hint: Consider the definition of the derivative.

A.
$$\frac{2}{x^5}$$
 B. $-\frac{1}{10x^5}$ C. $\frac{1}{2x^6}$ D. $-\frac{10}{x^6}$ E. $-\frac{2}{5x^6}$

- 21. Approximate the value of $\int_{1}^{5} \sqrt{2x+1} \, dx$ using four rectangles of equal width and the midpoints of each subinterval to find the height.
 - A. $\sqrt{5} + \sqrt{7} + 3 + \sqrt{11}$ B. $\frac{1}{2}(\sqrt{5} + \sqrt{7} + 3 + \sqrt{11})$ C. $\sqrt{3} + \sqrt{5} + \sqrt{7} + 3$ D. $\frac{1}{2}(\sqrt{6} + \sqrt{8} + \sqrt{10} + \sqrt{12})$ E. $2 + \sqrt{6} + \sqrt{8} + \sqrt{10}$

22. If
$$f(x) = \begin{cases} 2 - |x| & x < 0\\ \sqrt{4 - x^2} & x \ge 0 \end{cases}$$
, evaluate $\int_{-2}^{2} f(x) dx$ using geometric areas. Be sure to sketch the graph of $f(x)$ and the corresponding region.

a. $2 + \pi$ b. $1 + \pi$ c. $4 + 2\pi$ d. $1 + 2\pi$ e. $2 + 4\pi$

Merry Christmas and Happy Holidays!