MAC 1147 - Fall 2021 - EXAM 2A

Questions 1-23 are worth 4 points each.

$$
\text { Perp slope }=\frac{-3}{4}
$$

$$
f(2)=\frac{29}{3}
$$

1. $g(x)$ is a linear function perpendicular to $f(x)=\frac{4}{3} x+7$. The two functions intersect when $x=2$. What is the x-intercept of $g(x)$?
A. $x=\frac{127}{9}$
B. $x=\frac{148}{9}$
C. $x=\frac{134}{9}$
D. $x=\frac{71}{3}$
E. $x=\frac{29}{3}$

$$
g(x)=-\frac{3}{4}(x-2)+\frac{29}{3} \quad \begin{aligned}
& x \text { int: } \\
& 0-\frac{3}{4}(x-2)+\frac{21}{3} \rightarrow x=\frac{134}{9}
\end{aligned}
$$

Find vertexes
2. Select the function that has exactly one x-intercept. $f(x)=\ldots$
(A) $(2,0)$
$(4,-7)$
$-16 x+25$
B. $2 x^{2}-16 x+25$
C. $4 x^{2}-8 x+9$
D. $-2 x^{2}+8 x-11$
E. $-3 x^{2}+24 x-43$

$$
(2,-3)
$$

$$
(4,-19)
$$

bounce $\sqrt{ }$ bounce
3. Which of these could be the graph of $p(x)=(x-1)^{2}(x-2)^{1}(x-4)^{2}$?
A.

D.

B.

E.

C.

AA
4. Select the rational function which has the following properties:

- Has a zero of multiplicity 2 at $x=-1$ and a zero of multiplicity 1 at $x=1$.
- Has a vertical asymptote at $x=2 .(X-2)^{n}$
- Has a hole at $x=5 .(x-5)$
- Has a horizontal asymptote of $y=0$. heed n n $f(x)=\ldots$
A. $\frac{(x-5)(x+1)^{2}(x-1)}{(x-5)(x-2)}$
B. $\frac{(x-5)(x+1)(x-1)^{2}}{(x-5)(x-2)}$
C. $\frac{(x-5)(x+1)^{2}(x-1)}{(x-5)^{4}(x-2)}$
D $\frac{(x-5)(x+1)^{2}(x-1)}{(x-5)(x-2)^{5}}$
E. $\frac{(x-5)(x-2)}{(x-5)(x+1)^{2}(x-1)}$

5. $i^{245}=$
A. 1
B. i

C. -1
D. $-i$
E. The greatest power in the known universe
6. Select the false statement.
A. If $f(x)=\frac{p(x)}{q(x)}$ is a rational function with a vertical asymptote at $x=7$, then $x-7$ must be a factor of $q(x)$.
B. The graphs of $f(x)=-x^{2}$ and $g(x)=x^{2}-8 x+16$ do not intersect.
C. If a rational function $f(x)$ has a hole at $x=4$ then $f(4)$ is undefined.
D. $g(x)=2 x^{3}+7 x^{2}-4 x+5$ is a rational function.
E. A rational function can have two horizontal asymptotes.

MAC 1147 - Fall 2021 - EXAM 2A
7. Choose the solution to the inequality

$$
\frac{x(x-7)}{\frac{x^{2}-7 x}{x^{3}-8} \geq 0 \quad(x-2)(\underbrace{\left(x^{2}+2 x\right.}+11)}
$$

A. $(-\infty, 0] \cup[7, \infty)$
B. $(-\infty, 0] \cup(2,7]$
C. $(2,7]$
always
D. $[0,2) \cup[7, \infty)$
E. $[0,2)$

$$
x=1
$$

8. Simplify, assuming $x>2 .-3(x-2)(x+2) \quad(x+6)\left(x^{2}+x+8\right)$

$$
\begin{aligned}
& \frac{12-3 x^{2}}{x^{2}+8 x+12} \cdot \frac{x^{3}+7 x^{2}+14 x+48}{x-2}= \\
& (x+2)(x+6)
\end{aligned}
$$

A. $3\left(x^{2}-x+8\right)$
B. $-3\left(x^{2}-x+8\right)$
C. $-3\left(x^{2}+x+8\right)$
D. 1
E. $3\left(x^{2}+x+8\right)$
9. Multiply the complex numbers.

$$
(4+3 i)\left(7 i+2 i^{2}\right)=
$$

A. $-13-34 i$
B. $29-22 i$
C. $22+29 i$
D. $13+34 i$
(E.) $-29+22 i$

$$
\begin{aligned}
& (4+3 i)(-2+7 i) \\
& =-8+28 i-6 i+21 i^{2}=-29+22 i
\end{aligned}
$$

MAC 1147 - Fall 2021 - EXAM 2A

10. Which interval is the solution to the inequality $g(x) \geq f(x)$?

A. $(-\infty, 2]$
B. $[2, \infty)$
C. $(-\infty, 1]$
D. $[1, \infty)$
E. $(-\infty, \infty)$
11. Choose the solution to the inequality $(t-2)^{2}(t-7)$

$$
t^{3}-11 t^{2}+32 t-28<0
$$

A. $(-\infty, 2) \cup(2,7)$
B. $(-\infty, \infty)$
C. $(-\infty, 2) \cup(7, \infty)$
D. $(-\infty, 7)$
E. $(2,7)$

vertex (4,7)
12. Suppose $f(x)=x^{2}-8 x+23$ is a quadratic function. $g(x)$ is a linear function with slope 2 that passes through the vertex of $f(x)$. What are the coordinates of the other intersection point of $f(x)$ and $g(x)$?
A. $(6,11)$
B. $(2,11)$
C. $(4,6)$
D. $(6,7)$
E. $(4,7)$
$g(x)=2(x-4)+7$

$$
\begin{aligned}
& x^{2}-8 x+23=2(x- \\
& x^{2}-10 x+24=0
\end{aligned}
$$

$$
\begin{aligned}
& (x-4)(x-6)=0 \\
& x=4,6
\end{aligned}
$$

MAC 1147 - Fall 2021 - EXAM RA

$$
x-5 \geq 8
$$

$$
|x-5| \geq 8
$$

or
13. Choose the solution to the inequality

$$
\begin{aligned}
& \text { ty } \uparrow \text { 亿 } \\
& -3|x-5|+11 \leq-13
\end{aligned}
$$

A. $(-\infty,-3] \cup[5,13]$
B. $(-\infty,-3] \cup[13, \infty)$
C. $[-3,13]$
D. $[13, \infty)$
E. There are no solutions
14. Let

$$
P(z)=\underline{35} z^{5}-21 z^{4}+42 z^{3}-19 z^{2}+8 z+66
$$

Choose the value that could not be a zero of $P(z)$ according to the Rational Root Test.
A. 1
B. $-\frac{11}{7}$
C. $\frac{2}{3}$
D. $-\frac{1}{5}$
E. -2
3 not a divisor of 35
15. Line A is parallel to the x-axis and passes through the point $(4,9)$. Line B is perpendicular to the y-axis and passes through the point $(-6,1)$. At what point do the two lines intersect?
A. $(4,1)$
B. $(-6,9)$
C. $(0,9)$
D. $(-6,0)$
(E) Lines A and B do not intersect

16. Find the sum of all roots (real and complex) of the polynomial.

$$
x=1,-1,2+5 i, 2-5 i p(x)=x^{4}-4 x^{3}+28 x^{2}+4 x-29
$$

A. 3
B. 6
C. $4+10 i$
D. $3-10 i$
E. 4
17. Subtract and simplify, assuming $x>7$.

$$
\begin{aligned}
& \frac{15 x-69}{x^{2}-9 x+20}-\frac{6 x-42}{x^{2}-12 x+35} \\
& (x-4)(x-5) \\
& (x-5)(x-7)
\end{aligned}
$$

A. $\frac{6}{x-5}$
B. $\frac{7}{(x-4)(x-5)}$
C. $\frac{9}{x-4}$
D. $\frac{4}{(x-5)(x-7)}$
E. 1
$\frac{15 x-69}{(x-11)(x-5)}-\frac{6(x-4)}{(x-5)(x-4)}=\frac{9 x-45}{(x-5)(x-4)}=\frac{9(x-5)}{(x-4)(x-5)}$
18. Select the true statement about a polynomial $f(x)$ with real coefficients.
A. If the leading coefficient of $f(x)$ is negative, then $f(x)$ has no real number roots.
B. If $4+7 i$ and $4-7 i$ are the only zeros of $f(x)$, then $f(x)$ has an odd degree.
C. If $5+2 i$ is a zero of $f(x)$, then $x^{2}+29$ must be one of its factors.
D. If $f(x)$ has degree larger than 1 at least one root, then product of all of its roots is a real number.
E. If $x=a$ is a zero of $f(x)$ then $(x+a)$ is a factor of $f(x)$
19. Which statement describes the behavior of $f(x)$?

$$
f(x)=-8 x^{5}+9 x^{4}-2 x^{3}+11 x^{2}+5 x+13
$$

A. As $x \rightarrow \infty, f(x) \rightarrow \infty$ and as $x \rightarrow-\infty, f(x) \rightarrow-\infty$
(B. As $x \rightarrow \infty, f(x) \rightarrow-\infty$ and as $x \rightarrow-\infty, f(x) \rightarrow \infty$
C. As $x \rightarrow \infty, f(x) \rightarrow-\infty$ and as $x \rightarrow-\infty, f(x) \rightarrow-\infty$
D. As $x \rightarrow \infty, f(x) \rightarrow \infty$ and as $x \rightarrow-\infty, f(x) \rightarrow \infty$
E. $f(x)$ takes long walks on the beach and plays guitar.
20. Identify the horizontal asymptote of the function.

$$
f(x)=\frac{\left.8 x^{6}\right)+3 x^{5}+7 x^{2}}{5 x^{5}+11 x^{4}+2 x^{3}}
$$

A. $y=0$
B. $y=\frac{8}{5}$
C. $y=\frac{7}{2}$
D. $y=1$
E.). $f(x)$ has no horizontal asymptote
21. Which quadratic function has vertex $(3,-7)$ and passes through the point $(5,1)$?

P($f(x)=x^{2}-6 x+2$ $f(5)=-3(3,-7)$
 $f(5)=$
 $=1$

B. $f(x)=2 x^{2}-12 x+11 \quad$ \&. $f(x)=x^{2}-6 x-2$
*. $f(x)=2 x^{2}-12 x-11$
22. Which of these could be the graph of

same side

B.

E.

MAC 1147 - Fall 2021 - EXAM 2A
23. Which value of b in the system below will produce a system with no solutions?

$$
\begin{aligned}
4 x+7 y & =21 \\
-12 x+b y & =-68
\end{aligned}
$$

A. -7
B. 0
C. 7
(D.) -21
E. 21

TA. \qquad Disc. Per. \qquad
\qquad
Honor Pledge: "On my honor, I have neither given nor received unauthorized aid for this exam."
UP ID \# \qquad Signature \qquad

YOU MUST SHOW ALL WORK TO RECEIVE FULL CREDIT.

Free response questions $24-25$ are worth 4 points each.
24. $f(x)$ is a parabola that passes through the points $(2,13),(6,13)$ and $(0,37)$
a. (3 pts) $g(x)$ is formed by shifting the graph of $f(x)$ down vertically by 13 units. Find a formula for $g(x)$ in standard form.
Hint: Write the coordinates of some points on $g(x)$.

$$
a=2
$$

$$
\underbrace{(2,0)(6,0)}_{x \text {-ints }}(0,24)) g(x)=2(x-2)(x-6)
$$

$$
g(x)=a(x-2)(x-6)
$$

$$
\begin{aligned}
& \text { Plug in }(0,24) \\
& 24=a(0-2)(0-6)
\end{aligned}
$$

b. (1 pt) Find a formula for $f(x)$ in standard form.

$$
\begin{aligned}
f(x) & =g(x)+13 \\
& =2(x-4)^{2}-8+13 \\
f(x) & =2(x-4)^{2}+5
\end{aligned}
$$

25. Construct a rational function $f(x)$ with the properties listed below. Write the formula for your function in factored form and sketch its graph. Each property is worth 1 point and must be evident in both graph and formula.

$$
x=2
$$

$$
x=-4
$$

- $f(x)$ has exactly one positive x-intercept and exactly one negative x-intercept
- $f(x)$ has exactly one vertical asymptote petween its x-intercepts $\quad X=-1$
- $f(x)$ has a horizontal asymptote below the x-axis $y=-3$
- $f(x)$ has a positive y-intercept

