Questions 1-20 are worth 4 points each.

1. Choose the value that is not a rational number but is a real number:
W. $\frac{\sqrt{4}}{9}=\frac{2}{9}$
B. $-.181818 \ldots$
(4) $\sqrt{-5}$
D.) $\frac{3}{\sqrt{7}}$
E. All of these are rational and real numbers.
2. $\sqrt{9}=$
A. 81
B. 3
C. ± 3
D. -3
E. ± 81
3. Subtract.
$\left(4 n^{5}-5 n^{3}+7 n^{2}-4 n+6\right)+\left(2 n^{5}+4 n^{2}+5 n^{3}+11+\overline{2} n^{4}\right)=$
$2 n^{5}-2 n^{4}+0 n^{3}+3 n^{2}-4 n-5$
A. $6 n^{5}-2 n^{4}-10 n^{3}+3 n^{2}-4 n-5$
B. $6 n^{5}+2 n^{4}-10 n^{3}+11 n^{2}-4 n+17$
C. $2 n^{5}+2 n^{4}+11 n^{2}-4 n+17$
D. $2 n^{5}-2 n^{4}+3 n^{2}-4 n-5$
E. $2 n^{5}-2 n^{4}-10 n^{3}+11 n^{2}-4 n-5$

MAC 1147 - Fall 2021 — EXAM 1A

4. The graph of each equation below is a circle. Which one has exactly one x-intercept?

A. $(x-8)^{2}+(y-1)^{2}=4$
B. $(x-4)^{2}+(y-5)^{2}=25$
D. $(x-1)^{2}+(y-9)^{2}=1$
E. $(x-6)^{2}+(y-6)^{2}=16$

C. $(x-3)^{2}+(y-4)^{2}=36$
5. Choose the true statement:
A. Every function is a relation, and every relation is a function
B. If $f(5)=-9$ then the points $(5,0)$ and $(0,-9)$ lie on the graph of f.
C. Every function has a domain and a range.
D. A relation is a function if each of its inputs corresponds to one or more outputs.
E. Graphically, a zero of a function corresponds to a y-intercept.
6. On which interval(s) is the function graphed below concave down?

A. $(1, \infty)$
B. $(-\infty, 0) \cup(3, \infty)$
C. $(-\infty, 1)$
D. $(0,3)$
E. $(0,1) \cup(3, \infty)$
7. Use the functions below to evaluate $(f \circ g)(-3)=f(g(-3))=f(4)=10$

$$
\left.\begin{aligned}
& f(x)=-(x-3)^{2}+11 \\
& x \\
& x \\
& \hline g(x) \\
& \hline-3 \\
& 4
\end{aligned} \right\rvert\, \begin{array}{c|c|c|c|c|c|c}
& -2 & -1 & 0 & 1 & 2 & 3 \\
\hline
\end{array}
$$

$(f \circ g)(-3)=$
A. 10
B. 26
C. -14
D. -10
E. 2
8. The graph of $g(x)$ below is a translation of the graph of $f(x)$. What is the formula for $g(x)$ in terms of $f(x)$?

A. $g(x)=f(x)-7$
B. $g(x)=f(x-5)+7$
C. $g(x)=f(x+5)+7$
D. $g(x)=f(x+5)-7$
E. $g(x)=f(x-5)-7$

MAC 1147 - Fall 2021 - EXAM 1A

9. Select the false statement.
A. If $f(x)$ and $g(x)$ are inverses, then the graph of $f(x)$ is a reflection of the graph of $g(x)$
B. $f^{-1}(f(x))=x$ for all x in the domain of f
C. If the domain of $f(x)$ is all real numbers, then so is the domain of $f^{-1}(x)$
D. If $f(x)$ and $g(x)$ are inverses, then $(f \circ g)(x)=x$ and $(g \circ f)(x)=x$
E. If $f(9)=-8$ then $f^{-1}(-8)=9$
10. Solve the equation. What is the sum of all the solutions? $\left(x^{2}-9\right)(x-7)=0$
$x^{3}-7 x^{2}-9 x+63=0$
$x^{2}(x-7)-9(x-7)=0$

$$
\begin{gathered}
(x-3)(x+3)(x-7)=0 \\
x^{3}-7 x^{2}-9 x=-63=3,-3,7
\end{gathered}
$$

A. 10
B. 21
C. 13
D. 0
E. 7
11. Find the x-intercepts) of the equation below.

$$
\begin{aligned}
& y=0 \\
& -11=-2 X \quad x=\frac{11}{2}
\end{aligned}
$$

A. $x=\frac{7}{6}, 0$
B. $x=\frac{7}{6}$
C. $x=\frac{6}{7}$
D. $x=\frac{11}{2}$
E. $x=\frac{11}{2}, 0$

MAC 1147 - Fall 2021 — EXAM 1A

12. Suppose that $f(x)$ is increasing on the interval (a, b). Select the statement that must be true.
A. $f\left(\frac{a+b}{2}\right)>f(a)$
B. $f(x)$ has a root in the interval (a, b)
C. $f(x)$ has an absolute maximum in the interval (a, b)
D. $f(b)>2 \cdot f(a)$

13. Suppose that

$$
f(x)= \begin{cases}3 x+4 & x<5 \\ 7 & x=5 \\ (x-2)^{2}+7 & x>5\end{cases}
$$

$f(0)+f(7)=4+3 z=36$
A. 36
B. 11
C. 32
D. 20
E. 32
14. Choose the expression that is equivalent to $3 \sqrt{125}+8 \sqrt{20}$.

$$
=3(5 \sqrt{5})+8(2 \sqrt{5})=15 \sqrt{5}+16 \sqrt{5}=31 \sqrt{5}
$$

A. $31 \sqrt{5}$
B. $11 \sqrt{145}$
C. $11 \sqrt{5}$
D. $7 \sqrt{10}$
E. $7 \sqrt{5}$
15. Choose the equation that has symmetry across the x-axis.
A. $x^{2}+y=1$
B. $x^{2}+y^{2}+y=1$
C. $x^{2}+y^{2}+x=1$
D. $x^{2}+x+y=1$
E. $x^{2}+y^{2}+x+y=1$

$$
f(t)=-3 \quad g(6)=7
$$

$$
\text { MAC } 1147 \text { — Fall } 2021 \text { - EXAM 1A }
$$

16. Suppose that $f(z)=-3 z+15$ and $g(z)=(z-8)^{2}+3 \cdot(-3)(7)+(-3)+7$
What is $(f g)(6)+(f+g)(6)$?
A. -2
B. -42
C. 128
D. -17
E. 8

$2(x+6)^{2}+2=2 x^{2}+24 x+74$

17. Which of the functions below transforms the graph of $f(x)=x^{2}$ by shifting it left by 6 units, then stretching it vertically by a factor of 2 , then shifting it up by 2 units?
A. $g(x)=2 x^{2}-24 x+74$
B. $g(x)=2 x^{2}-12 x+70$
C. $g(x)=2 x^{2}+24 x+74$
D. $g(x)=2 x^{2}+12 x+38$
E. $g(x)=2 x^{2}+24 x+70$
18. Express the domain of the function $h(x)=\frac{3 x+7}{x^{2}-8 x-33}$ in interval notation.

$$
(x-1))(x+3)
$$

A. $(-3,11)$

$$
x \neq-3,11
$$

B. $(-\infty,-3) \cup(-3,11) \cup(11, \infty)$
C. $(-\infty,-3) \cup(11, \infty)$
D. $(-\infty,-3) \cup(-3,11)$
E. $(-3,11)$
19. Suppose that $f(r)=(r-4)^{5}+7$. What is $f^{-1}(r)$?

$$
x=(y-4)^{5}+7
$$

A. $f^{-1}(r)=\sqrt[5]{r-4}+7$
B. $f^{-1}(r)=\sqrt[5]{r}+11$
C. $f^{-1}(r)=\sqrt[5]{r-11}$
D. $f^{-1}(r)=\sqrt[5]{r}-\sqrt[5]{7}+4$
E. $f^{-1}(r)=\sqrt[5]{r-7}+4$
20. Suppose that $x>11 / 5$ and $y_{-4 / 7} 0$. The expression $\sqrt[{\sqrt[5]{x^{11}}}]{\sqrt[7]{y^{4}}}$ can be written in the form $x^{c} y^{d}$. What is the value of $c+d ? X^{11 / 5} \cdot Y^{-4 / 7}$
(A.) $\frac{57}{35}$
B. $\frac{57}{2}$
C. $\frac{97}{12}$
D. $\frac{57}{12}$
E. $\frac{97}{35}$

MAC 1147 - Fall 2021 - EXAM AA

21. Select the false statement.
A. If a and b are integers then $a+b$ is also an integer.
B. Any real number that is not a rational number is an irrational number.
C. If n is a natural number, then \sqrt{n} is an irrational number.
D. The integers consist of the positive and negative natural numbers, and 0 .
E. If a and b are nonzero integers then $\frac{a}{b}$ is a rational number.
22. Select the graph that is decreasing and concave up.
A.

B.

D.

C.

23. Multiply.

$$
(x-6)\left(x^{2}+9 x+3\right)=
$$

A. $x^{3}-51 x^{2}+18 x-6$
B. $x^{3}-51 x^{2}+3 x-3$
C. $x^{3}+3 x^{2}-51 x-18$
D. $x^{3}+3 x^{2}+9 x-18$
E. $x^{3}+x^{2}+3 x-18$
$x^{3}+9 x^{2}+3 x-6 x^{2}-54 x-18$

TA. \qquad Disc. Per. \qquad
\qquad
Honor Pledge: "On my honor, I have neither given nor received unauthorized aid for this exam."
UP ID \# \qquad Signature \qquad

YOU MUST SHOW ALL WORK TO RECEIVE FULL CREDIT.

Free response questions $24-25$ are worth 4 points each.
24. Use the equation of a circle given below to answer the questions. You must show understandable work in order to receive credit.

$$
x^{2}+y^{2}-8 x-10 y+5=0
$$

a. (2 pts) Find the center and radius of the circle.

$$
x^{2}-8 x+y^{2}-10 y=-5
$$

$$
x^{2}-8 x+16+y^{2}-10 y+25=-5+16+25
$$

Center: $(4,5)$
Radius: 6
b. (2 pts) Find any y-intercepts the circle has or show that it has none. Give your answers as points and simplify any radicals.
Set $x=0$

$$
\begin{aligned}
& (0-4)^{2}+(y-5)^{2}=36 \\
& (y-5)^{2}=20
\end{aligned}
$$

$$
y-5= \pm \sqrt{20}= \pm 2 \sqrt{5}
$$

$$
y=5+2 \sqrt{5}, 5-2 \sqrt{5}
$$

$$
y \text {-intercep tit): }(0,5+2 \sqrt{5})(0,5-2 \sqrt{5})
$$

25. On the axes below, sketch the graph of a function $g(x)$ that has the following properties. Each property is worth 1 point.

- $g(x)$ is increasing only on the interval $(2,5)$.
Many possible
- $g(x)$ is concave up only on the interval $(-1,5)$. Answers
- $g(x)$ has an absolute minimum when $x=2$.
- $g(x)$ is constant only on the interval $(-5,-1)$.

Turn in your scantron and your free response to your TA. The worked-out solutions will be posted on Canvas after the test.

