CHM 2045 Exam 2 (In	nstructors: Gower, M	litchell, Harrison. Uca	k) (Form Code A)	October 20, 2009
Instructions: On your sca blank), Discussion Sectio worth 10.0 points for a to scantron sheet). Turn in o the loss of points.	antron sheet enter you n No. and Form Code tal maximum of 250 p nly the scantron. Bub	r name, UF ID number ((see above). This exam ts. You may retain your bling errors of any kin	(start on the first space and l consists of 25 multiple choi exam sheet (mark your ans d will count as an incorrec	leave the last space ice questions each wers on it and the ct response or result in
Rydberg constant $R = 1.097$	x 10 m ⁻¹ ; Rhc = 2.18 x	10 J/atom; Planck's con	stant h = 6.626×10^{-54} Js; c = 2	2.99 x 10 m/s;
1. Calculate the waveler	ngth (in nm) of a pho	ton emitted by hydrog	en atom when an electron	drops from
n=5 to n=2 state. 1) 4.34×10^{-7} nm	2) 434 nm	3) 1280 nm	4) 1280 x 10 ⁻⁷ nm	5) 135 x 10 ⁻⁶ nm
2. Identify the atom or i	ion corresponding to	an atom with ground	state electronic configurat	ion [Kr]4d ¹⁰ 5s ² 5p ⁵
1) In	2) In ⁺	3) Tl	4) I	5) I ⁺
3. The wavelength of ra	idiation used in a mic	crowave oven is 2.10 cr	n. What is the energy of o	ne photon of this
1) 1.66 x 10 $^{-23}$ J	2) 9.47 x 10 ⁻²⁴ J	3) 1.07 x 10 ⁻²⁴	J 4) 1.03x 10 ⁻²³ J	5) 1.66 x 10 ⁻²⁴ J
4. Which of the followir	ng sets of quantum nu	umbers (n, <i>l</i> , m _l) are no	ot allowed?	
a) 3,	b) 2, 3	, -1 c) 3, 0, +1	d) 6, 2, -1 e) 4, 4,	+4
(1) a, b, c	2) b, c, e	3) c, d	4) a, b, e	5) a, e
5. Find the de Broglie w	vavelength of an elect 2) 2.01×10^{-10} m	tron (electron mass 9.1 2) 7 27 \times 10 ⁻¹⁰ m	1 x 10 ⁻³¹ kg) with a speed	of 2.5 x 10 6 m/s.
1) 1.27 x 10 m	2) 2.91 x 10 m	3) 7.27 X 10 m	4) 7.27 X 10 m	5) 5.27 x 10 m
6. An electron (electron What is the uncertainty	mass 9.11 x 10 ^{- 31} kg in its position?	g) moving near an aton	nic nucleus has a speed of	6 x 10 ⁶ ± 1% m/s.
1) 1 x 10 ⁻⁹ m	2) $2 \times 10^{-9} \text{ m}$	3) 1 x 10 ⁻¹¹ m	4) 2x 10 ⁻¹¹ m	5) 3 x 10 ⁻¹¹ m
7. Arrange the following	g elements, S. Ge, Cl	. Rb. Ca in order of ind	creasing first ionization en	ergv. (IE1).
1) Rb < Ca < Ge < S	< Cl 2) C	a < Rb < S < Ge < Cl	3) Rb < Ca <s 0<="" <="" td=""><td>Ge < Cl</td></s>	Ge < Cl
4) Ca < Rb < Ge < C	cl < S 5) R	b < Ca < Ge < Cl < S		
8. Arrange the following	g elements, S. Ga. P.	Ba. Fr in order of deci	easing atomic size.	
1) $Fr > Ba > P > Ga$	> S 2) Ba	a > Ga > P > S > Fr	3) Fr > Ba > P > S	>Ga
4) Fr > Ba > Ga > P >	> S 5) B	a > Ga > P > S > Fr		
9. Arrange the following	g ions. Al ³⁺ . F ¹⁻ . Na ¹⁻	⁺ . S ²⁻ in order of increa	asing ionic size.	
1) $Na^{1+} < Al^{3+} < F^{1-}$	$< S^{2-}$ 2) Al	$^{3+} < \mathrm{Na}^{1+} < \mathrm{F}^{1-} < \mathrm{S}^{2-}$	3) Al $^{3+} < F^{1-} < S$	$^{2-} < Na^{1+}$
4) $Na^{1+} < Al^{3+} < S^{2-}$	$< \mathbf{F}^{1-}$ 5) Al ²	$^{3+} < Na^{1+} < S^{2-} < F^{1-}$	-,	
10. Which one of these i	is the most polar bon	d?		
(1) C-Cl	(2) C-O	(3) N-F	(4) N-S (5) S	Si-O
11 Which of the followi	na malaculas ara nal	pr? Cl. CO. BF. NO	SO. YOF.	
(1) Cl_2 , CO_2	(2) NO, XeF ₄	(3) BF ₃ , XeF ₄	$(4) CO_2, NO (5) N$	NO, SO_2
12. Photodissociation of ΔH^{o}_{rxn} for the reaction that would provide that	f water, H ₂ O(l) + <i>hv</i> - on is 285.8 kJ per mo he necessary energy f	→ $H_2(g) + \frac{1}{2}O_2(g)$, has ble of water decompose for the photodissociation	been suggested as a sourc d. Calculate the maximur on of one molecule of wate	e of hydrogen. The n wavelength (in nm) r.

- (1) 419 nm (2) 47 nm (3) 93 nm (4) 279 nm (5) 838 nm
- 13. What is the maximum number of electrons in an atom that can have the quantum numbers n = 4, $m_l = +1$? (1) 1 (2) 2 (3) 4 (4) 6 (5) 8
- 14. The 2^{nd} electron affinity (*EA*₂) for any atom is always a positive value, because:
 - (1) adding a negatively-charged electron to a negatively-charged anion is an endothermic process
 - (2) adding a negatively-charged electron to a positively-charged nucleus is an exothermic process
 - (3) Coulomb's Law states that electrostatic attraction is directly related to the distance between charged particles, and an anion is a larger particle than its parent atom
 - (4) a positively-charged cation is formed
 - (5) when the negative EA_1 of one atom bonds to the negative EA_1 of another atom, the result is always a positive EA_2

15.	Element X has the electron configurat between ions of M	following valence of tion: [core] <i>ns²np</i> ¹ . and X?	electron configuration What ionic compou	on: [core] <i>ns²np[*]</i> ind would most	4. Element M has the following the second se	ng valence on
	(1) MX	(2) M_2X	$(3) MX_2$	(4) M	$_{2}X_{3}$ (5) $M_{3}X_{4}$	
16.	Which of the follow	ving ionic compour	nds has the stronges	t (most negative	e) lattice energy?	
200	(1) Mg_3N_2	(2) MgO	$(3) Na_2S$	(4) Li	$\mathbf{F} \qquad (5) \mathbf{Cs}_2 \mathbf{Se}$	
17.	What is the formal contributor for the	charge on the nitr thiocyanate ion (S	ogen atom in the Le CN ⁻)? (Hint: three :	wis structure for resonance struc	or the most significant resona ctures)	ince
	1) 0	2) -1	3) +1	4) -2	5) +2	
18.	Select the following	g species which is t	rigonal pyramidal.			
	1) BeF ₃	2) Cl_3^{-1}	$3) SO_4^{-2}$	4) CIC	5) ClO ₃ ⁻¹	
19.	Select the following	y species which is s	quare planar.			
17.	1) ICl ₄ ⁻¹	2) BrF ₅	3) XeOF ₄	4) IOC	Cl ₅ 5) IF ₃	
20	Identify the elemen	t of Doriod 2 that I	as the following su	noosivo ionizati	ion onorgios in kI/mol	
20.	Identify the element $IE_1 = 131/1$ $IE_2 = 33$	11 or Period 2 that 1	Tas the following such that 77471 is the following such that $F_{-} = 100$	02 IF. – 13320	$IF_{-} = 71345$ IF ₋ = 84087	
-	$IE_1 = 1314$ $IE_2 = 33$	$\frac{11}{100} = 5250 \text{ III}$	$L_4 = /4/1$ IE ₅ = 109 3) O	92 $IE_6 = 13329$ (4) No	$1E_7 = /1343$ $1E_8 = 0400/$	
		2) D	5) 0	-) 140	5) None of these	
21.	Which of the follow	ring elements has tl	ne largest second ior	nization energy	(IE ₂)?	
	(1) Li	2) B	3) O	4) F	5) Na	
22.	Which of the follow	ving ground state i	ons is/are paramagn	netic?		
		(1) Fe ^{$2+$} (1)	2) Zn^{2+} (3) (Cu^{1+} (4) N	i^{2+} (5) V^{3+}	
	1) 1 and 4 only	2) only 1, 4, a	nd 5 3) only	y 1 4) o	nly 2 5) only 4 and 5	
23.	Oxygen difluoride bond using the star	is an unstable mole ndard enthalpy of 1	ecule that reacts rea reaction and the bor	dily with water nd energy data	. Calculate the bond energy provided.	of the O-F
		$OF_2(g) + H_2O(g$	$\rightarrow O_2(g) + 2H$	$\mathbf{IF}(\mathbf{g})$ $\mathbf{\Delta}$	$H^{\circ} = -318 \text{ kJ}$	
	Bon Bon	ıd: ıd energy (kJ/mol):	O-O 148	O-H O= 467 49	=O H-F 8 565	
	(1) 188 kJ	(2) 256 kJ	(3) 275 kJ	(4) 346 kJ	(5) 388 kJ	
24.	In which one of the	e following structur	es, as drawn, does t	he central aton	n have a formal charge of +23	?
	a. SF ₆	b. SO ₄ ²⁻	c. O ₃	d. BeCl ₂	e. AlCl ₄ ⁻	
	•-•• • F •	[[;]] ²⁻ :0:	÷ČI÷	r. 7	
		;ö—s		 Be	ci ci	
	F F			l	AI	
	÷Ę:	L :Ö:] : <u></u> ::	:CI:		
	1) a	2) b	3) c	4) d	5) e	
25	Which one of the fa	ollowing Lewis stri	uctures is definitely i	incorrect?		
20.	a. NO_2	b. BeCl ₂	c. CO_3^{2-}	d. CH4	e. SO ₂	
	ំេះ			н	: O :	
	 N •	Be		н — с́—	н S	
	:0:	Ċ		I H	" \$○\$	
	1) a	2) b	3) c	4) d	5) e	