Instructions: On your scantron sheet enter your name, UF ID number, and Form Code (start with the first space and leave the last space blank). This exam consists of 20 multiple choice questions each worth 10.0 points for a total maximum of 200 pts. Keep your exam sheet (mark your answers on it and on the scantron sheet). Turn in only the scantron. Any bubbling error will count as an incorrect response, including wrong form code and answers.
(Useful Information: $101.3 \mathrm{~J}=1 \mathrm{atmL} ; 1 \mathrm{cal}=4.184 \mathrm{~J} ; 1 \mathrm{Cal}=1000 \mathrm{cal} ; \mathrm{C}_{\text {Water }}=4.184 \mathrm{~J} / \mathrm{gC}$)

1. If a system gains 50 kJ of energy during a process, what is the change in energy for the surroundings ($\Delta \mathrm{E}_{\text {surr }}$)? Is this process endo- or exothermic for the system?
(1) +50 kJ ; endothermic
(2) -50 kJ ; endothermic
(3) +50 kJ ; exothermic
(4) -50 kJ ; exothermic
(5) Not enough information
2. How much work (in J) is required to expand the volume of a pump from 1.0 L to 4.5 L against an external pressure of 1.1 atm ?
(1) -3.85 J
(2) -3.9 J
(3) -3.9 kJ
(4) -390. J
(5) - 390.1 J
3. Determine the mass of water produced by burning enough methane to produce 250.0 kJ of heat. $\left(\Delta \mathrm{H}_{\text {comb }}=-802.3 \mathrm{~kJ} / \mathrm{mol}\right)$
(1) 5.61 g
(2) 11.23 g
(3) 9.32 g
(4) 4.66 g
(5) 57.8 g
4. Three $1-\mathrm{kg}$ room temperature samples of lead $\left(\mathrm{C}_{\mathrm{Pb}}=0.130 \mathrm{~J} / \mathrm{gK}\right)$, aluminum $\left(\mathrm{C}_{\mathrm{Al}}=0.900 \mathrm{~J} / \mathrm{gK}\right)$, and ethanol $\left(\mathrm{C}_{\mathrm{EtOH}}=\right.$ $2.44 \mathrm{~J} / \mathrm{gK}$) are placed in a heating furnace. After 30 minutes, order these samples by increasing temperature.
(1) Lead $<$ Aluminum $<$ Ethanol
(2) Ethanol < Lead $<$ Aluminum
(3) Ethanol < Aluminum < Lead
(4) Aluminum $<$ Ethanol $<$ Lead
(5) They are all the same temperature
5. Calculate $\Delta \mathrm{H}_{\mathrm{rxn}}$ for the combustion of methane. Use the following reactions and given changes in enthalpies.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=44.0 \mathrm{~kJ} \\
\mathrm{CH}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta \mathrm{H}=284.0 \mathrm{~kJ} \\
\mathrm{CH}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}=-527.0 \mathrm{~kJ}
\end{array}
$$

(1) -855 kJ
(2) -767 kJ
(3) -899 kJ
(4) +287 kJ
(5) -726 kJ
6. One tablespoon of mayonnaise has a mass of 25.0 g . It is combusted in a bomb calorimeter whose heat capacity is $87.0 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. The temperature of the calorimeter rose from $22.0^{\circ} \mathrm{C}$ to $27.3^{\circ} \mathrm{C}$. What is the food caloric content of the mayonnaise?
(1) $461 \mathrm{Cal} / \mathrm{g}$
(2) $18.4 \mathrm{Cal} / \mathrm{g}$
(3) $77.2 \mathrm{Cal} / \mathrm{g}$
(4) $7.72 \times 10^{4} \mathrm{Cal} / \mathrm{g}$
(5) $4.41 \mathrm{Cal} / \mathrm{g}$
7. How much heat is required to warm 2.00 liters of water from $25.0^{\circ} \mathrm{C}$ to $95.0^{\circ} \mathrm{C}$? (Assume a density of $1.00 \mathrm{~g} / \mathrm{mL}$ for water)
(1) $5.86 \times 10^{5} \mathrm{~kJ}$
(2) $1.40 \times 10^{2} \mathrm{~kJ}$
(3) $3.35 \times 10^{1} \mathrm{~kJ}$
(4) $5.86 \times 10^{2} \mathrm{~kJ}$
(5) $-1.40 \times 10^{2} \mathrm{~kJ}$
8. A system absorbs 317 kJ of heat and the surroundings do 284 kJ of work on the system. What is the change in internal energy of the system?
(1) 33 kJ
(2) -601 kJ
(3) -33 kJ
(4) 601 kJ
(5) Not enough information
9. The explosive nitroglycerin $\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}\right)$ decomposes rapidly upon ignition according to the following equation:
$4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}(\mathrm{l}) \rightarrow 12 \mathrm{CO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(g)+6 \mathrm{~N}_{2}(g)+\mathrm{O}_{2}(g) \quad \Delta \mathrm{H}_{\mathrm{rxn}}=-5678 \mathrm{~kJ}$
Calculate the standard enthalpy of formation $\left(\Delta \mathrm{H}_{\mathrm{f}}\right)$ for nitroglycerin. For $\mathrm{CO}_{2}(g), \Delta \mathrm{H}_{\mathrm{rxn}}=-393.5 \mathrm{~kJ} / \mathrm{mol}$. For $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta \mathrm{H}_{\mathrm{rxn}}=-241.82 \mathrm{~kJ} / \mathrm{mol}$.
(1) $12818 \mathrm{~kJ} / \mathrm{mol}$
(2) $-1462 \mathrm{~kJ} / \mathrm{mol}$
(3) $5043 \mathrm{~kJ} / \mathrm{mol}$
(4) $-366 \mathrm{~kJ} / \mathrm{mol}$
(5) $5526 \mathrm{~kJ} / \mathrm{mol}$
10. Suppose that 5.00 g of silver is initially at $27.0^{\circ} \mathrm{C}$. What is the final temperature of the sample of silver after it has released 0.75 kJ of heat? $\left(\mathrm{C}_{\mathrm{Ag}}=0.235 \mathrm{~J} / \mathrm{g} \mathrm{K}\right)$
(1) 938 K
(2) 665 K
(3) 27.6 K
(4) 301 K
(5) 336 K
11. What is the correct equation for the formation of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ from its elements in their standard states?
(1) $2 \mathrm{C}(\mathrm{s})+4 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CH}_{3} \mathrm{OH}(I)$
(2) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)$
(3) $\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(l) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(l)$
(4) $\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
(5) $\mathrm{CH}_{4}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
12. Under certain nonstandard conditions, oxidation by $\mathrm{O}_{2}(g)$ of $1 \mathrm{~mol}^{2} \mathrm{SO}_{2}(g)$ to $\mathrm{SO}_{3}(g)$ absorbs 89.4 kJ . The heat of formation of $\mathrm{SO}_{3}(\mathrm{~g})$ is $-204.1 \mathrm{~kJ} / \mathrm{mol}$ under these conditions. Determine the heat of formation of $\mathrm{SO}_{2}(\mathrm{~g})$.
(1) $293.5 \mathrm{~kJ} / \mathrm{mol}$
(2) $-293.5 \mathrm{~kJ} / \mathrm{mol}$
(3) $497.6 \mathrm{~kJ} / \mathrm{mol}$
(4) $-497.6 \mathrm{~kJ} / \mathrm{mol}$
(5) $0 \mathrm{~kJ} / \mathrm{mol}$
13. Which of the following are state functions?
I. q
II. w
III. $\Delta \mathrm{E}$
IV. Temperature
(1) None of the above
(2) I and II only
(3) I, III, and IV only
(4) III and IV only
(5) All of the above
14. In a coffee-cup calorimeter, 1.25 g of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is dissolved in enough water to make 25.0 mL of solution. The initial temperature is $25.8^{\circ} \mathrm{C}$ and the final temperature is $21.9^{\circ} \mathrm{C}$. Calculate the change in enthalpy for the reaction in $\mathrm{kJ} / \mathrm{mol}$. (Assuming $1.0 \mathrm{~g} / \mathrm{mL}$ as the density of the solution).
(1) $326.35 \mathrm{~kJ} / \mathrm{mol}$
(2) $26.1 \mathrm{~kJ} / \mathrm{mol}$
(3) $-407.94 \mathrm{~kJ} / \mathrm{mol}$
(4) $-26.1 \mathrm{~kJ} / \mathrm{mol}$
(5) $407.94 \mathrm{~kJ} / \mathrm{mol}$
15. What mass of propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$ must be burned (i.e. combusted) to emit 576 kJ of heat? $\left(\Delta \mathrm{H}_{\text {comb }}=-2217 \mathrm{~kJ} / \mathrm{mol}\right)$
(1) 11.5 g
(2) 0.260 g
(3) 3.85 g
(4) 0.0876 g
(5) 169 g
16. What volume (in mL) of 0.750 M NaOH is required to titrate 100.00 mL of $1.00 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to the equivalence point?
(1) 37.5 mL
(2) 75.0 mL
(3) 133 mL
(4) 188 mL
(5) 267 mL
17. What is the name for the compound RuO_{2}.
(1) Rhodium dioxide
(2) Ruthenium(IV) oxide
(3) Ruthenium dioxide
(4) Ruthenium (II) oxide
(5) Ruthenium oxide
18. What volume of a $15.0 \mathrm{M} \mathrm{HNO}_{3}$ solution is required to completely react with 35.7 mL of a $10.8 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution according to the following balanced chemical equation?

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(a q)+2 \mathrm{HNO}_{3}(a q) \rightarrow 2 \mathrm{NaNO}_{3}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

(1) 38.6 mL
(2) 25.7 mL
(3) 77.1 mL
(4) 71.4 mL
(5) 51.4 mL
19. What mass (kg) of NH_{3} will be formed when 7.22 kg of H_{2} and 43.5 kg of N_{2} are added according to the following balanced chemical equation?
$3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(1) 122.0 kg
(2) 40.67 kg
(3) 81.97 kg
(4) 52.89 kg
(5) 17.63 kg
20. If 3.5 L of a $1.1 \mathrm{M} \mathrm{CaCl}_{2}$ solution is diluted to 500.0 mL , what is the molarity of the diluted solution?
(1) 157.14 M
2) 0.0077 M
(3) 1.6 M
(4) 7.7 M
(5) 0.16 M

