Form Code B

CHEM 1025 Exam # 4

Instructions: On your scantron sheet enter your name, UF ID number, and Form Code (start with the first space and leave the last space blank). This exam consists of 25 multiple choice questions each worth 8.0 points for a total maximum of 200 pts. Keep your exam sheet (mark your answers on it and on the scantron sheet). Turn in only the scantron. Any bubbling error will count as an incorrect response, including wrong form code and answers.

1. Arrange the following bands in order of decreasing bond polarity: P-S, C-O, F-F, C-F, Na-F (1) Na-F > C-F > C-O > P-S > F-F(2) F-F > C-O > C-F > P-S > Na-F(3) F-F > P-S > C-O > C-F > Na-F

(4) Na-F > C-O > P-S > C-F > F-F(5) P-S > Na-F > C-O > C-F > F-F

2. Determine the bond energy of a H-Cl bond given the following information.

Determine the bon	a energy of a fr er oc	sha given the ronown	15 mormanon.		
H ₃ C-H	$(g) + \operatorname{Cl-Cl}(g) \to \operatorname{H}_3\operatorname{C}$	C-Cl(g) + H-Cl(g)	$\Delta H_{rxn}^{o} = -113 \text{ kJ}$		
Bond			Bond Energy (kJ/mol)		
	Cl-Cl		243		
	C-Cl		339		
	H-C		414		
(1) -1109 kJ/mol	(2) 883 kJ/mol	(3) -623 kJ/mol	(4) 55 kJ/mol	(5) 431 kJ/mol	

3. Which of the following is True?

- (1) A double covalent bond has 2 electrons
- (2) As bonds get longer, they also get stronger
- (3) Molecules can not exist with an odd number of electrons
- (4) All metals are solid at room temperature
- (5) Resonance structures must have the same total formal charge

4.	Calculate the ΔH_{rxn} for this reaction using the given bond energies: Bond			$CH_4(g) + 2 H_2O(g) \rightarrow 4H_2(g) + CO_2(g)$ Bond Energy (kJ/mol)		
				0.	101)	
		H-H		436		
		O-H		464		
		H-C		414		
		C=O		799		
	(1) -357 kJ	(2) +170 kJ	(3) -170 kJ	(4) +357 kJ	(5) -2110 kJ	

5. How many total electrons surround the central atom in XeF_2 ? (1) 6(2) 8(3) 10(4) 12 (5) 14

The potential energy of two charged particles depends on: 6. I. Magnitude of the charges II. Sign of the charges III. Distance between the charges (3) III only (4) I and III only (1) I only (2) II only (5) I, II, and III

- 7. Breaking bonds _____ ____, while forming bonds ___
 - (1) requires no energy; requires no energy
 - (2) releases energy; requires energy
 - (3) releases energy; releases energy
 - (4) requires energy; releases energy
 - (5) requires energy; requires energy
- H₂CCH₂ Which of the following has the stronger carbon-carbon bond: HCCH H₃CCH₃ 8. (1) HCCH (2) H₂CCH₂ (3) H₃CCH₃ (4) All of their carbon-carbon bonds are of equal strength (5) Not enough information
- 9. Arrange the following atoms in order of increasing electronegativity: P, F, Cs, Ga, K

(1) Cs < P < K < Ga < F

- (2) F < K < P < Ga < Cs
- (3) Cs < Ga < P < K < F(4) F < P < Ga < K < Cs
- (5) Cs < K < Ga < P < F
- 10. Which of the following is False?
 - (1) Ionic bonds have an electrostatic attraction
 - (2) Chemical bonds form because the resulting molecule is at higher potential energy
 - (3) Noble gases are the least reactive group of elements
 - (4) Ionic bonds form by the interaction of a nonmetal and a metal
 - (5) Covalent molecules have low melting and boiling points
- 11. To which of the following does the octet rule apply? (2) Helium

(1) SF₄

(3) BCl₃

 $(4) CN^{-}$

6 April 2010

12. What con point?	centration of a	15.0 mL Ba(OH) ₂ s	olution is	required to tit	rate 25.3	mL of 0.2 M HI	to the equiv	valence
(1) 0.	34 M	(2) 4.22 M	(3) 0.17 M		(4) 0.67 M	(5)	0.00095 M
(1) M	ne name for the onoiridium trib dium(III) brom		(2) Iridiu ium tribro	m(I) bromide mide		(3) Iridium bron	nide	
	What volume of a 12.0 M HClO ₄ solution is required to completely react with 50.0 mL of a 14.9 M Li ₂ CO ₃ solution according to the following balanced chemical equation? $2 \text{ HClO}_4(aq) + \text{Li}_2\text{CO}_3(aq) \rightarrow 2 \text{ LiClO}_4(aq) + \text{CO}_2(g) + \text{H}_2\text{O}(l)$							
(1) 8	0.5 mL	(2) 31.0 mL	(3) 62.1 mL		(4) 4.47 mL	(5)) 124 mL
	ss (kg) of AlCl ₃ chemical equati	will be formed who	-	of Al and 24.8 3 $\operatorname{Cl}_2(g) \to 2$	-	$_2$ are added accor	ding to the	following
(1) 57	7.63 kg	(2) 31.09 kg	(3) 24.71 kg		(4) 37.06 kg	(5)	46.64 kg
16. If 0.123 L (1) 0.		ctose solution is dil 2) 5570.0 M		8.0 mL, what (3) 5.57 M		larity of the dilut) 3.92 M		? 0.00046 M
a bomb ca		ne has a ΔE _{rxn} of -3. emperature rises fr (2) 13.08 kJ/°C	om 25.17				e bomb cal	
	18. If the surroundings emit 100 kJ of energy during a process, what is the change in energy for the system (ΔE_{sys})? Is this process endo- or exothermic for the surroundings?							
	kJ; endothermic J; exothermic) kJ; endo enough in	thermic formation		(3) + 100 kJ; exc	thermic	
19. Use Hess	' Law and the fo	ollowing data to de CH ₄ (g)		e value of ΔH_{g} g) $\rightarrow CCl_4(g)$			on:	
		$\begin{array}{l} C(s) + 2 \ H_2(g) \\ C(s) + 2 \ Cl_2(g) \\ H_2(g) + Cl_2(g) \end{array}$	$\rightarrow CCl_4$	(g)	$\Delta H_2 = -$	-74.6 kJ -95.7 kJ -92.3 kJ		
(1) -2	09.1 kJ	(2) -205.7 kJ	(3) -354.9 kJ		(4) -113.4 kJ	(5)) -262.6 kJ
20. Top fuel dragsters and funny cars burn nitromethane as fuel according to the following combustion equation: $2 \text{ CH}_3\text{NO}_2(l) + 3/2 \text{ O}_2(g) \rightarrow 2 \text{ CO}_2(g) + 3 \text{ H}_2\text{O}(g) + \text{N}_2(g)$ Calculate the standard enthalpy of formation (ΔH_f) for nitromethane. For CO ₂ (g), $\Delta \text{H}_f = -393.5 \text{ kJ/mol}$. For H ₂ O(g), $\Delta \text{H}_f = -241.82 \text{ kJ/mol}$.								
(1) -94.06	kJ/mol (2)	-803.26 kJ/mol	(3) -40	1.63 kJ/mol	(4) -1	110.83 kJ/mol	(5) 257.9	2 kJ/mol
 21. Determine whether a bond between each of the following pairs of atoms would be pure covalent, polar covalent, or ionic: C and O Ca and O N and N P and Cl K and Br (1) Pure, Ionic, Pure, Ionic, Ionic (2) Polar, Polar, Pure, Ionic, Ionic (3) Polar, Ionic, Pure, Polar, Ionic (4) Polar, Polar, Ionic, Pure, Ionic (5) Pure, Ionic, Pure, Polar, Polar 								
22. What is the	ne formal charge (1) -2	e of the central ator (2) -1	$\begin{array}{c} \text{m in IF}_3?\\ \text{(3) 0} \end{array}$	(4) +1		(5) +2		
The mola lone pairs (1) C ₂ H ₆ C		(2) $C_2 H$		nolecular form e pair	nula of fo			
24. How man (1) 0	y resonance stru	actures are possible (2) 1		ormate ion, HC) 2	CO ₂ -?	(4) 3	(5) 4	
25. Use the B	$Na(s) + \frac{1}{2} Cl$ $Na(g) \rightarrow Na(g) \rightarrow Na(g)$ $\frac{1}{2} Cl_2(g) \rightarrow Cl(g)$	$\operatorname{Cl}(g)$		to calculate th $\Delta H_{f}^{o} = -411 \text{ kJ},$ $\Delta H_{f}^{o} = -108 \text{ kJ},$ $\Delta H_{f}^{o} = +122 \text{ kJ},$ $\Delta H_{f}^{o} = +349 \text{ kJ},$ $\Delta H_{f}^{o} = -788 \text{ kJ},$	/mol /mol //mol //mol	ion energy of soc	lium.	
(1) +496	kJ/mol	(2) -836 kJ/mol	(3) 14 kJ/mol		(4) -14 kJ/mol	(5)) +836 kJ/mol