1. Find the radius of convergence and interval of convergence for the series.

a.
$$\sum_{n=1}^{\infty} \frac{(-1)^n 4^n}{\sqrt{n}} x^n$$
 b. $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)2^n} (x-1)^n$ c. $\sum_{n=1}^{\infty} \frac{n! x^n}{1 \cdot 3 \cdot 5 \cdots (2n-1)}$ d. $\sum_{n=1}^{\infty} \frac{n^2 x^n}{2 \cdot 4 \cdot 6 \cdots (2n)}$

2. Suppose that $\sum_{n=0}^{\infty} c_n x^n$ converges when x = -4 and diverges when x = 6. What can be said about the convergence or divergence of the following series?

a.
$$\sum_{n=0}^{\infty} c_n$$
 b. $\sum_{n=0}^{\infty} c_n 8^n$ c. $\sum_{n=0}^{\infty} c_n (-3)^n$ d. $\sum_{n=0}^{\infty} c_n (-1)^n 9^n$

3. Let $S(x) = \sum_{n=0}^{\infty} c_n x^n$ be a power series with radius of convergence R and suppose that S(x) converges when x = 2 and diverges when x = -7. Which of the following conclusions must be true?

- a. The series $c_0 c_1 + c_2 c_3 + \cdots$ converges
- b. $R \ge 2$
- c. R < 7

d. The series $c_0 - 2c_1 + 4c_2 - 8c_3 + \cdots$ converges

- e. The series $c_0 + 7c_1 + 49c_2 + 343c_3 + \cdots$ diverges
- f. The series $-c_0 + 9c_1 81c_2 + 729c_3 + \cdots$ diverges
- g. The series $c_0 + 4c_1 + 16c_2 + 64c_3 + \cdots$ diverges

4. Find a power series representation for the series and determine the radius and interval of convergence.

a.
$$f(x) = \frac{4}{2x+3}$$
 b. $f(x) = \frac{x-1}{x+2}$ c. $f(x) = \frac{x^2}{x^2+16}$ d. $f(x) = \ln(5-x)$
e. $f(x) = x^2 \arctan x$ f. $f(x) = \frac{x}{(1+4x)^2}$ g. $f(x) = \ln(1+x^4)$ h. $f(x) = e^{3+x^2}$
i. $g(x) = \frac{3}{x^2+x-2}$

5. Evaluate the indefinite integral as a power series.

a.
$$\int \frac{t}{1-t^8} dt$$
 b. $\int x^2 \ln(1+x) dx$ c. $\int \frac{\tan^{-1} x}{x} dx$ d. $\int x \ln(1+x^2) dx$
e. $\int x^2 \sin(x^2) dx$ f. $\int \frac{\cos x - 1}{x} dx$ g. $\int \arctan(x^2) dx$ h. $\int \frac{\cos(x^2) - 1}{x} dx$

6. Find the Taylor series for f(x) centered at the given value of a.

a.
$$f(x) = \sqrt[3]{x}, a = 8$$
 b. $f(x) = \ln x, a = 1$ c. $f(x) = e^{4x}, a = 4$
d. $f(x) = \sqrt{x}, a = 16$ e. $g(x) = \frac{1}{x+4}, a = 4$ f. $h(x) = \ln(1+2x), a = 4$

7. Find the first four nonzero terms of the series for f(x) centered at the given value of a.

a.
$$f(x) = \sin x, \ a = \frac{\pi}{6}$$
 b. $f(x) = \cos x, \ a = \frac{\pi}{2}$

8. Use the series to evaluate the limit

a. $\lim_{x \to 0} \frac{x - \ln(1+x)}{x^2}$ b. $\lim_{x \to 0} \frac{1 - \cos x}{1 + x - e^x}$ c. $\lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^5}$

9. Find the sum of the series
a.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{n!}$$
 b. $\sum_{n=0}^{\infty} (-1)^n \frac{\pi^{2n}}{6^{2n}(2n)!}$ c. $\sum_{n=0}^{\infty} (-1)^n \frac{3^n}{n5^n}$
d. $1 - \ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \dots$ e. $3 + \frac{9}{2!} + \frac{27}{3!} + \frac{8}{4!}$ f. $\sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{4^n}$

10. Approximate the value of the integrals
a. ∫₀¹ e^{-x²} dx with an error no greater than 5 × 10⁻⁴.
b. ∫₀¹ x cos xdx with an error no greater than 10⁻³.

11. Find the Taylor series expansion of

a. $f(x) = \sin x$ centered at $a = \frac{\pi}{4}$. Then use the Taylor Polynomial T_2 to approximate $\sin(47^\circ)$.

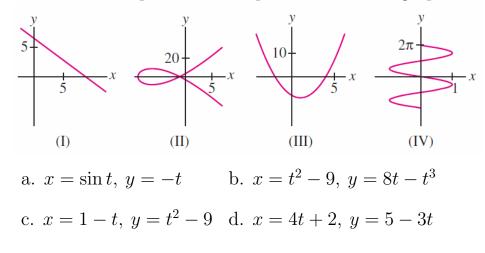
b. $g(x) = 5x + e^{-3x}$ centered at a = 0. Then use the Taylor Polynomial T_2 to approximate g(0.1).

12. Let $f(x) = \sin\left(\frac{x^2}{2}\right)$. Determine the value of $f^{(50)}(0)$.

13. Find the Taylor series for f centered at a = -3 and its radius of convergence if $f^{(n)}(-3) = -\frac{n!}{3^{n+1}}$.

14. Starting with the geometric series $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, (-1 < x < 1)$, use differentiation to find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{4^n}$.

15. Eliminate the parameter t to find a Cartesian equation for the curve. a. $x = t^2 - 3$, y = t + 2, $-3 \le t \le 3$ b. $x = \sin t$, $y = \cos t$, $0 \le t \le 2\pi$ c. $x = \sqrt{t}$, y = 1 - t d. $x = t^2$, $y = t^3$ e. $x = t^2$, $y = \ln t$ f. $x = e^t$, $y = e^{2t}$



16. Match the parameteric equations with the graphs below.

17. Find $\frac{d^2y}{dt^2}$ at the given value of t. a. $x = t^3 + t$, $y = 7t^2 - 4$, t = 2 b. $x = t^{-1} + t$, $y = 4 - t^{-2}$, t = 1c. $x = \cos t$, $y = \sin t$, $t = \frac{\pi}{4}$

18. Find the points on the curve $x = 6 \cos t$, $y = \sin(2t)$, $0 \le t \le 2\pi$, where the tangent line is

- a. horizontal
- b. vertical

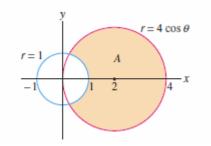
19. Find the length of the curve.

a. $(3t+1, 9-4t), 0 \le t \le 2$ b. $(e^t - t, 4e^{\frac{t}{2}}), 0 \le t \le 2$ c. $(3t, 4t^{\frac{3}{2}}), 0 \le t \le 1$ d. $(\sin 3t, \cos(3t)), 0 \le t \le \pi$

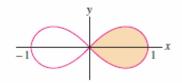
20. Which of the following are possible pairs of polar coordinates for the point with rectangular coordinates (0, -2)?

a. $(2, \frac{\pi}{2})$ b. $(2, \frac{7\pi}{2})$ c. $(-2, -\frac{3\pi}{2})$ d. $(-2, \frac{7\pi}{2})$ e. $(-2, -\frac{\pi}{2})$ f. $(2, -\frac{7\pi}{2})$ **21.** Find the shaded areas below.

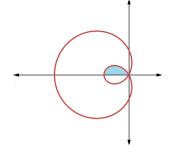
a. The shaded region inside $r = 4\cos\theta$ and outside r = 1.



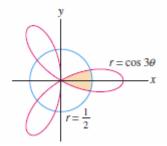
b. The shaded region of the lemniscate $r^2 = \cos(2\theta)$



c. The shaded region of the cardioid $r = 1 - 2\cos\theta$



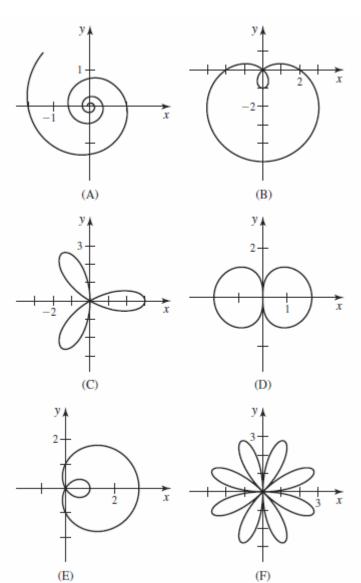
d. The shaded area enclosed by $r=\cos 3\theta$ and $r=\frac{1}{2}$



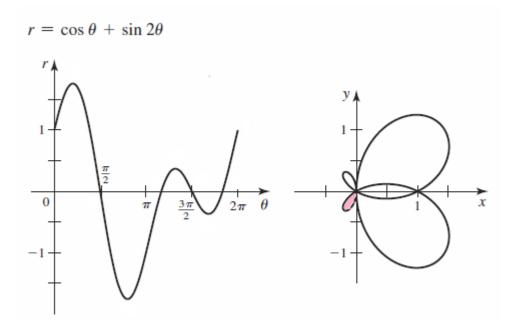
e. The area of the region that lies inside both curves $r_1 = 3 + 2\cos\theta$ and $r_2 = 3 + 2\sin\theta$.

22. Match the equations with the graphs

- a. $r = 3 \sin 4\theta$ b. $r^2 = 4 \cos \theta$ c. $r = 2 - 3 \sin \theta$ d. $r = 1 + 2 \cos \theta$ e. $r = 3 \cos 3\theta$
- d. $r = e^{-\frac{\theta}{6}}$



23. Given flat and polar curves of $r = \cos \theta + \sin 2\theta$, let $\int_a^b \frac{1}{2} (\cos \theta + \sin 2\theta)^2 d\theta$ be the area of the shaded region. Find *a* and *b*.



Exam 3 - Review

• Taylor series of a function f centered at x = a is given by $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$ where

$$c_n = \frac{f^n(a)}{n!}$$
. When $a = 0$, we call it a Maclaurin series.

- c_n = Taylor coefficient(or just coefficient) of $(x a)^n$.
- Taylor Polynomial: $T_N(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_N(x-a)^N$.
- The answers provided here are in the simplified form accepted on the exam with similar questions.
 - 1. Recall the Maclaurin series of the following functions. Make sure you know them before you go to the exam!!! (even though this list will be provided on the exam.)
 - (a) $\frac{1}{1-x} =$ (b) $e^x =$
 - (c) $\ln(1+x) =$
 - (d) $\ln(1-x) =$
 - (e) $\arctan(x) =$
 - (f) $\sin(x) =$

(g)
$$\cos(x) =$$

2. Find the ROC and IOC of the followings:

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n (x-5)^n}{4^n n}$$

(b) $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$

3. Find Taylor series expansion of the following functions centered at given point WITH-OUT SETTING UP THE TABLE of derivatives. Then find the radius of convergence and the interval of convergence for each.

(a)
$$f(x) = \frac{x^2}{(2-x^3)^2}$$
; $x = 0$
(b) $f(x) = e^{x+2}$; $x = 0$
(c) $f(x) = (x-1)e^{3x}$; $x = 1$

- (0) f(w) (w 1) 0 ; w 1
- 4. Find the Taylor series expansion of the following functions centered at given point.

(a)
$$f(x) = \frac{1}{x^2}$$
; $x = 2$

- (b) $f(x) = \sqrt{3x+4}$; x = 7, Use second Taylor Polynomial, $T_2(x)$ to approximate $\sqrt{25.3}$.
- 5. Evaluate the following sums:

(a)
$$\frac{\pi^5}{2^5 5!} - \frac{\pi^7}{2^7 7!} + \frac{\pi^9}{2^9 9!} - \frac{\pi^{11}}{2^{11} 11!} + \dots$$

(b) $-\frac{\pi^6}{2^6 5!} + \frac{\pi^8}{2^8 7!} - \frac{\pi^{10}}{2^{10} 9!} + \dots$

(c) $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n} - \sum_{n=1}^{\infty} \frac{n3^n}{7^n}$ (hint for the second series: differentiate a geometric series)

- 6. Let $f(x) = \sum_{n=0}^{\infty} \frac{(-4)^n x^{2n}}{(2n+1)!}$. Note that the radius of convergence of this series is ∞ . Evaluate $f(\pi/12)$.
- 7. Let $F(x) = \int_0^1 e^{-t^2} dt$. Find the Maclaurian series for F(x). Evaluate F(1) to with an error of at most 0.01.
- 8. Find the Maclaurin series and the radius of convergence.

(a)
$$F(x) = \int_0^x \frac{t - \arctan(t)}{t^3} dt$$
 (b) $\int_0^1 x e^{x^3} dx$

9. (a) Suppose the power series $\sum_{n=0}^{\infty} c_n (x+2)^n$ converges at x = -4 and diverges at x = 3. What can you say about the convergence of the following series?

(i)
$$\sum_{n=0}^{\infty} (-1)^n c_n 7^n$$
 (ii) $\sum_{n=0}^{\infty} c_n$ (iii) $\sum_{n=0}^{\infty} c_n 2^n$ (iv) $\sum_{n=0}^{\infty} c_n 3^n$ (v) $\sum_{n=0}^{\infty} c_n 9^n$

(b) Let $S(x) = \sum_{n=0}^{\infty} c_n (x-6)^n$ be a power series with radius of convergence R > 0. Which of the following statements are possible?

(i) The series $c_0 - 5c_1 + 25c_2 - 125c_3 + \cdots$ diverges but $c_0 + 2c_1 + 4c_2 + 8c_3 + \cdots$ converges.

(ii) The series $c_0 - c_1 + c_2 - c_3 + \cdots$ diverges but $c_0 + 2c_1 + 4c_2 + 8c_3 + \cdots$ converges.

(iii) The series converges absolutely at x = 1, conditionally converges at x = 9.

10. Let
$$f(x) = \sum_{n=0}^{\infty} \frac{(-1)^n (x-2)^{4n+3}}{2^{2n+1} (2n+3)!}$$
 and $g(x) = \arctan(x^2)$. Determine the followings:
(a) $f^{(43)}(2), \ g^{(43)}(0)$

(b) $f^{(18)}(2), g^{(18)}(0)$

11. Find the equation of the tangent line to the path $c(t) = (t^2 + 1, t^3 - 4t)$ at t = 3.

12. Convert from polar to rectangular coordinates.

(a)
$$\left(3, \frac{\pi}{6}\right)$$

(b) $\left(5, \frac{-\pi}{2}\right)$

13. Convert from rectangular to polar coordinates.

- (a) $(3, \sqrt{3})$ (b) (-2, 2)
- 14. Let $r = 2\cos(\theta) 1$ on $[0, 2\pi]$.
 - (a) Solve for $r = 0, [0, 2\pi]$

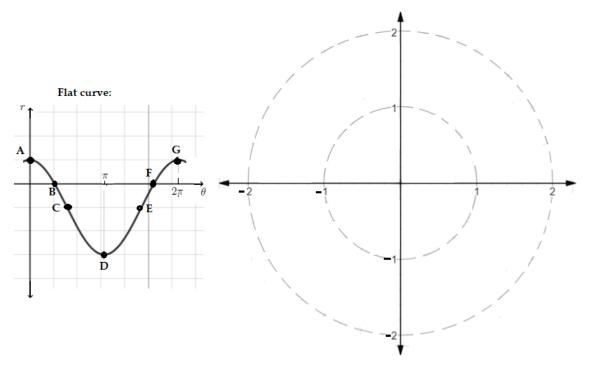
 $\theta =$ _____

(b) Identify the points in the flat curve below in polar coordinates (r, θ) :

 $\begin{array}{ccc} A:(& , &), B:(& , &), C:(& , &), D:(& , &), E:(& , &), F:(& , &), \\ G:(& , &) \end{array}$

Label these points on the polar coordinates on the right.

Use the flat curve on the left to help sketch the polar curve r on the right.



(c) Set up an integral for the area inside r in the second quadrant.

$$A = \int_{a}^{b} d\theta, \ a = _, \ b = _.$$

(d) Find the area above.

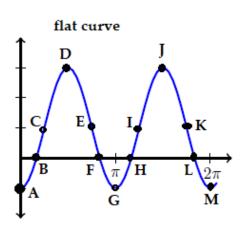
A = _____

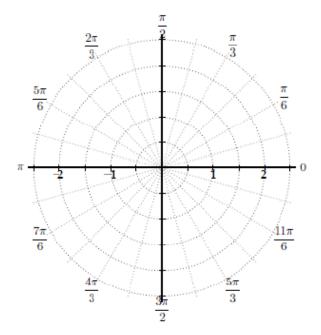
- 15. Find the area of the region inside the curve $r_1 = 1$ and outside the curve $r_2 = \cos(3\theta)$.
- 16. Find the arc length of the parametric curve.
 - (a) $C(t) = (e^{-t} \cos t, e^{-t} \sin t)$ for $0 \le t \le 5$. (b) $C: x(t) = e^t - t, \ y(t) = 4e^{t/2}, \ 0 \le t \le 2$ (c) $C: x(t) = e^{2t} + e^{-2t}, \ y(t) = 4t - 64, \ 0 \le t \le 1$
- 17. Find the area between the 2 curves:

(a)
$$r_1^2 = 9\cos(2\theta), r_2 = 5\cos(\theta).$$

(b) $r_1^2 = 9\cos(2\theta), r_2 = \frac{3}{\sqrt{2}}.$

- 18. Let C be the curve $x(t) = \cos^2 t + \cos t$, $y(t) = \sin t \cos t + \sin t$. Find the t values where the curve has HTL and VTL.
- 19. Let $r = 1 2\cos(2\theta)$ and its flat curve is given below on the left. Answer the same questions as in problem 14.



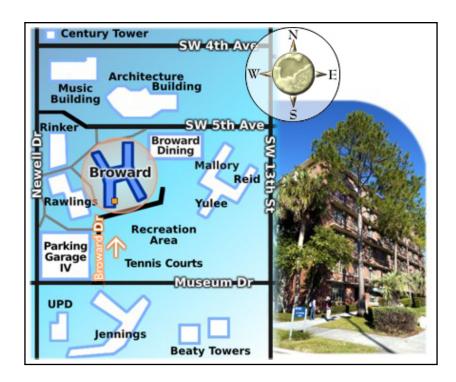


MAC 2312 Exam 3 Review

This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources made available by the Teaching Center include:

- Walk-In tutoring at Broward Hall
- Private-Appointment, one-on-one tutoring at Broward Hall
- Walk-In tutoring in LIT 215
- Supplemental Instruction
- Video resources for Math and Science classes at UF
- Written exam reviews and copies of previous exams

The teaching center is located in the basement of Broward Hall:



You can learn more about the services offered by the teaching center by visiting https://teachingcenter.ufl.edu/

1. The length of the parametric curve $x = e^t - t$, $y = 4e^{t/2}$, $t \in [-8,3]$ is given by the integral:

A.
$$\int_{-8}^{3} (e^{t} + 1)dt$$

D. $\int_{-8}^{3} 2(e^{t} - 1)dt$
B. $\int_{-8}^{3} 2(e^{t} + 1)dt$
C. $\int_{-8}^{3} 4(e^{t} + 1)dt$
E. $\int_{-8}^{3} \sqrt{2}(e^{t} + 1)dt$

- 2. The polar equation $r = 2\cos\theta$ can be expressed as:
 - A. $(x-1)^2 + (y+1)^2 = 1$ B. $(x+1)^2 + (y-1)^2 = 1$ C. $(x-1)^2 + y^2 = 1$ B. $(x+1)^2 + (y-1)^2 = 1$ D. $(x-1)^2 + (y-1)^2 = 4$ E. $(x+1)^2 + (y+1)^2 = 2$
- 3. Graph the following polar equation: $r = 5 4\cos\theta$
- 4. Calculate the Taylor series representation of e^{3x} centered at 3.

A.
$$e^9 \sum_{n=0}^{\infty} \frac{3^n (x-3)^n}{n!}$$

B. $\sum_{n=0}^{\infty} \frac{3^n (x-3)^n}{n!}$
C. $e^9 \sum_{n=0}^{\infty} \frac{(x-3)^n}{n!}$
D. $\sum_{n=0}^{\infty} \frac{3^n x^n}{n!}$
E. $\sum_{n=0}^{\infty} e^9 \frac{3^n (x-3)^n}{n}$

- 5. Write the Cartesian point $(2,\sqrt{12})$ in polar coordinates.
 - A. $(4, \frac{\pi}{3})$ B. $(4, \frac{\pi}{6})$ C. $(\frac{\pi}{6}, 2)$ D. $(\frac{\pi}{3}, 2)$ E. $(2, \frac{\pi}{3})$

- 6. Consider $x = t^3 t^2 + t$ and $y = 3e^t$. Calculate the slope and the sign (positive or negative) of the second derivative at the point (0,3).
 - A. Slope = 3, second derivative is negative
 - B. Slope = 1, second derivative is negative
 - C. Slope $=\frac{1}{3}$, second derivative is negative
 - D. Slope $=\frac{1}{3}$, second derivative is positive
 - E. Slope = 3, second derivative is positive
- 7. Which of the following describes the graph of the parametric curve given by the equations below?

$$\begin{cases} x = 2\sin(t) \\ y = \cos(t) \end{cases} \quad 0 \le t \le 2\pi$$

- A. An ellipse drawn clockwise
- B. A circle drawn counterclockwise
- C. A circle drawn clockwise
- D. An ellipse drawn counterclockwise
- E. None of the others
- 8. Find a Taylor series for $\ln(1+4x)$ centered at 1.

A.
$$\ln 5 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4^n (x-1)^n}{5^n n}$$

B. $\ln 5 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4^n (x-1)^n}{5^n}$
C. $\ln 5 + \sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4^n (x-1)^n}{5^n n!}$
D. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 4^n x^n}{n}$
E. $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} 4^n (x-1)^n}{5^n n!}$

MAC2312 Exam 3 Review

9. Find the point (x, y) where the tangent line to the curve $c(t) = (3t^2 - 2, 3t^2 + 2t)$ is <u>horizontal</u>.

A.
$$\left(-\frac{14}{9}, \frac{52}{9}\right)$$

D. $\left(-\frac{23}{12}, -\frac{1}{4}\right)$
E. DNE
E. DNE

10. Graph the following:

(a)
$$r = cos(3\theta)$$

(b) $r = sin(2\theta)$

11. Find the Maclaurin series of $f(x) = \frac{x}{(3-x)^2}$ and determine its radius of convergence R.

A.
$$f(x) = \sum_{n=1}^{\infty} \frac{nx^n}{3^{n+1}}$$
 and $R = \frac{1}{3}$
B. $f(x) = \sum_{n=1}^{\infty} \frac{-nx^n}{3^{n+1}}$ and $R = \frac{1}{3}$
C. $f(x) = \sum_{n=1}^{\infty} \frac{nx^n}{3^{n+1}}$ and $R = 3$
D. $f(x) = \sum_{n=1}^{\infty} \frac{-nx^n}{3^{n+1}}$ and $R = 3$
E. $f(x) = \sum_{n=1}^{\infty} \frac{-nx^{n-1}}{3^{n+1}}$ and $R = \frac{1}{3}$

- 12. Suppose that $\sum c_n(x-2)^n$ converges for x = 4 and diverges for x = -2. Which of the following must be correct?
 - A. $\sum c_n (-2)^n$ converges B. $\sum c_n 4^n$ diverges C. $\sum c_n 3^n$ converges D. $\sum c_n (-1)^n$ converges E. $\sum c_n \left(\frac{5}{2}\right)^n$ diverges

13. If
$$f(x) = \sin^2(x)$$
, find $f^{(102)}(0)$.

A.
$$-\frac{102!}{205!}$$
B. $\frac{102!}{205!}$ C. $-\frac{102!}{51!}$ D. $\frac{102!}{205!}$ E. $\frac{205!}{102!}$

14. Set up an integral for the area of the region that lies inside $r = \sqrt{3}\sin\theta$ and outside $r = \cos\theta$.

A. Area
$$= \int_{\pi/3}^{2\pi} \frac{1}{2} (\sqrt{3} \sin \theta)^2 d\theta - \int_{\pi/3}^{\pi} \frac{1}{2} (\cos \theta)^2 d\theta$$

B. Area
$$= \int_{\pi/6}^{2\pi} \frac{1}{2} (\sqrt{3} \sin \theta)^2 d\theta - \int_{\pi/6}^{\pi/2} \frac{1}{2} (\cos \theta)^2 d\theta$$

C. Area
$$= \int_{\pi/6}^{2\pi} \frac{1}{2} (\sqrt{3} \sin \theta)^2 d\theta - \int_{\pi/6}^{\pi} \frac{1}{2} (\cos \theta)^2 d\theta$$

D. Area
$$= \int_{\pi/6}^{\pi} \frac{1}{2} (\sqrt{3} \sin \theta)^2 d\theta - \int_{\pi/6}^{\pi/2} \frac{1}{2} (\cos \theta)^2 d\theta$$

E. Area
$$= \int_{\pi/3}^{\pi} \frac{1}{2} (\sqrt{3} \sin \theta)^2 d\theta - \int_{\pi/3}^{\pi/2} \frac{1}{2} (\cos \theta)^2 d\theta$$

15. Graph the following polar equation: $r = 2 - 2 \sin \theta$