MAC2313, Calculus III Exam 3 Review

- 1. Convert the point $(1, -\sqrt{3}, -2\sqrt{3})$ from rectangular to (1) cylindrical coordinates (2) spherical coordinates
- 2. Identify the surface in cylindrical coordinates. (1) $r = 2 \sin \theta$ (2) $z = r^2 \cos(2\theta)$

3. Identify the surface in spherical coordinates. (1) $\rho = 4\cos\phi$ (2) $\cos^2\phi - \sin^2\phi = 0$

4. (1) Describe the solid region E in cylindrical coordinates if E is bounded below by the plane z = 0, laterally by the circular cylinder $x^2 + (y-1)^2 = 1$, and above by the paraboloid $z = x^2 + y^2$.

(2) Sketch the solid $E = \{ (r, \theta, z) \mid 0 \le \theta \le \pi/2, r \le z \le 2 \}.$

5. (1) Describe the solid region E in spherical coordinates if E is the portion of the solid bounded by the sphere $x^2+y^2+z^2=4$ and the cone $z^2=3(x^2+y^2)$ that lies in the first octant.

(2) Identify the solid

$$E = \{ (\rho, \theta, \phi) \mid 0 \le \theta \le \pi, \ 0 \le \phi \le \pi/3, \ 1/\cos\phi \le \rho \le 2 \}.$$

6. Evaluate the following integrals:

(1)
$$\int_{0}^{4} \int_{0}^{5} \frac{1}{\sqrt{x+y}} \, dy \, dx$$
 (2) $\int_{0}^{1} \int_{x}^{1} e^{x/y} \, dy \, dx$
(3) $\int_{0}^{1} \int_{y^{2}}^{1} y \sin(x^{2}) \, dx \, dy$ (4) $\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \frac{1}{1+x^{2}+y^{2}} \, dx \, dy$

7. Convert the integral $\int_0^1 \int_x^{\sqrt{2x-x^2}} \frac{1}{\sqrt{x^2+y^2}} \, dy \, dx$ to polar coordinates.

8. Set up double integral(s) of the area of the region that

(1) lies inside both $r = 1 + \cos \theta$ and $r = 3 \cos \theta$

(2) lies inside $r = 2\sin\theta$ and outside $r = 2\cos\theta$

9. Express the following integrals in polar coordinates:

(1) $\iint_{D} (x^2 + y^2)^{3/2} dA$, where *D* is the region in the first quadrant bounded by the lines y = 0 and $y = \sqrt{3}x$ and the circle $x^2 + y^2 = 9$.

(2) $\iint_{D} \sqrt{x^2 + y^2} dA$, where D is the closed disk with center (0, 1) and radius 1.

10. Set up a triple integral for the volume of the solid in the first octant bounded by the coordinate planes and the plane z = 6 - x - 2y.

11. Rewrite the integral $\int_{-1}^{1} \int_{x^2}^{1} \int_{0}^{1-y} f(x, y, z) dz dy dx$ as an iterated integral in the order dx dy dz.

12. Convert
$$\int_{0}^{2\pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^{2}}} 3r \, dz \, dr \, d\theta$$
 to

(1) rectangular coordinates with the order of integration dz dy dx

(2) spherical coordinates

(3) evaluate one of the above integrals

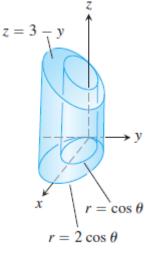
13. Convert $\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{\sqrt{x^2+y^2}}^{1} dz \, dy \, dx$ to spherical coordinates and then evaluate.

14. Express
$$\int_0^2 \int_0^{\sqrt{2x-x^2}} \int_0^{x^2+y^2} f(x,y,z) \, dz \, dy \, dx$$
 in cylindrical coordinates.

15. Find the volume of the solid bounded by the cylinder $y^2 + z^2 = 4$ and the planes x = 2y, x = 0, and z = 0 in the first octant.

16. Find the volume of the solid bounded by the paraboloids $z = 3x^2 + 3y^2$ and $z = 4 - x^2 - y^2$.

17. Set up a triple integral for the volume of the solid whose base is the region between the circles $r = \cos \theta$ and $r = 2 \cos \theta$ and whose top lies in the plane z = 3 - y.



18. Evaluate $\iint_R \cos\left(\frac{y-x}{y+x}\right) dA$, where *R* is the region bounded by the lines x + y = 2, x + y = 4, x = 0, and y = 0.

19. Evaluate $\iint_R \left(1 + \frac{x^2}{16} + \frac{y^2}{25}\right)^{3/2} dA$, where *R* is the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{25} = 1$.

20. Use the transformation $x = u^2$, $y = v^2$, and $z = w^2$ to set up an integral for the volume of the region bounded by $\sqrt{x} + \sqrt{y} + \sqrt{z} = 1$ and the coordinate planes.

21. True or False:

(1) For any region D in the plane, $\iint_{D} dA \ge 0$. (2) For any region D in the plane, $\iint_{D} f(x, y) dA \ge 0$. (3) If f is continuous on $[a, b] \times [c, d]$, then $\int_{a}^{b} \int_{c}^{d} f(x, y) dy dx = \int_{c}^{d} \int_{a}^{b} f(x, y) dy dx$.

(4)
$$\int_0^1 \int_0^x f(x,y) \, dy \, dx = \int_0^1 \int_0^y f(x,y) \, dx \, dy.$$

- (5) If the point P is on the surface $\phi = 0$, then P lies in the xy-plane.
- (6) If the point P is on the surface $\theta = 0$, then P lies in the xz-plane.