MAC2313, Calculus III
 Exam 3 Review

This review is not designed to be comprehensive, but to be representative of the topics covered on the exam.

1. Convert the point $(1,-\sqrt{3},-2 \sqrt{3})$ from rectangular to
(1) cylindrical coordinates
(2) spherical coordinates
2. Identify the surface in cylindrical coordinates.
(1) $r=2 \sin \theta$
(2) $z=r^{2} \cos (2 \theta)$
3. Identify the surface in spherical coordinates.
(1) $\rho=4 \cos \phi$
(2) $\cos ^{2} \phi-\sin ^{2} \phi=0$
4. (1) Describe the solid region E in cylindrical coordinates if E is bounded below by the plane $z=0$, laterally by the circular cylinder $x^{2}+(y-1)^{2}=1$, and above by the paraboloid $z=x^{2}+y^{2}$.
(2) Sketch the solid $E=\{(r, \theta, z) \mid 0 \leq \theta \leq \pi / 2, r \leq z \leq 2\}$.
5. (1) Describe the solid region E in spherical coordinates if E is the portion of the solid bounded by the sphere $x^{2}+y^{2}+z^{2}=4$ and the cone $z^{2}=3\left(x^{2}+y^{2}\right)$ that lies in the first octant.
(2) Identify the solid

$$
E=\{(\rho, \theta, \phi) \mid 0 \leq \theta \leq \pi, 0 \leq \phi \leq \pi / 3,1 / \cos \phi \leq \rho \leq 2\} .
$$

6. Evaluate the following integrals:
(1) $\int_{0}^{4} \int_{0}^{5} \frac{1}{\sqrt{x+y}} d y d x$
(2) $\int_{0}^{1} \int_{x}^{1} e^{x / y} d y d x$
(3) $\int_{0}^{1} \int_{y^{2}}^{1} y \sin \left(x^{2}\right) d x d y$
(4) $\int_{0}^{\sqrt{2}} \int_{y}^{\sqrt{4-y^{2}}} \frac{1}{1+x^{2}+y^{2}} d x d y$
7. Convert the integral $\int_{0}^{1} \int_{x}^{\sqrt{2 x-x^{2}}} \frac{1}{\sqrt{x^{2}+y^{2}}} d y d x$ to polar coordinates.
8. Set up double integral(s) of the area of the region that
(1) lies inside both $r=1+\cos \theta$ and $r=3 \cos \theta$
(2) lies inside $r=2 \sin \theta$ and outside $r=2 \cos \theta$
9. Express the following integrals in polar coordinates:
(1) $\iint_{D}\left(x^{2}+y^{2}\right)^{3 / 2} d A$, where D is the region in the first quadrant bounded by the lines $y=0$ and $y=\sqrt{3} x$ and the circle $x^{2}+y^{2}=9$.
(2) $\iint_{D} \sqrt{x^{2}+y^{2}} d A$, where D is the closed disk with center $(0,1)$ and radius 1.
10. Set up a triple integral for the volume of the solid in the first octant bounded by the coordinate planes and the plane $z=6-x-2 y$.
11. Rewrite the integral $\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} f(x, y, z) d z d y d x$ as an iterated integral in the order $d x d y d z$.
12. Convert $\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \int_{r}^{\sqrt{4-r^{2}}} 3 r d z d r d \theta$ to
(1) rectangular coordinates with the order of integration $d z d y d x$
(2) spherical coordinates
(3) evaluate one of the above integrals
13. Convert $\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{1} d z d y d x$ to spherical coordinates and then evaluate.
14. Express $\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \int_{0}^{x^{2}+y^{2}} f(x, y, z) d z d y d x$ in cylindrical coordinates.
15. Find the volume of the solid bounded by the cylinder $y^{2}+z^{2}=4$ and the planes $x=2 y, x=0$, and $z=0$ in the first octant.
16. Find the volume of the solid bounded by the paraboloids $z=3 x^{2}+3 y^{2}$ and $z=4-x^{2}-y^{2}$.
17. Set up a triple integral for the volume of the solid whose base is the region between the circles $r=\cos \theta$ and $r=2 \cos \theta$ and whose top lies in the plane $z=3-y$.

18. Evaluate $\iint_{R} \cos \left(\frac{y-x}{y+x}\right) d A$, where R is the region bounded by the lines $x+y=2, x+y=4, x=0$, and $y=0$.
19. Evaluate $\iint_{R}\left(1+\frac{x^{2}}{16}+\frac{y^{2}}{25}\right)^{3 / 2} d A$, where R is the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{25}=1$.
20. Use the transformation $x=u^{2}, y=v^{2}$, and $z=w^{2}$ to set up an integral for the volume of the region bounded by $\sqrt{x}+\sqrt{y}+\sqrt{z}=1$ and the coordinate planes.
21. True or False:
(1) For any region D in the plane, $\iint_{D} d A \geq 0$.
(2) For any region D in the plane, $\iint_{D} f(x, y) d A \geq 0$.
(3) If f is continuous on $[a, b] \times[c, d]$, then $\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d y d x$.
(4) $\int_{0}^{1} \int_{0}^{x} f(x, y) d y d x=\int_{0}^{1} \int_{0}^{y} f(x, y) d x d y$.
(5) If the point P is on the surface $\phi=0$, then P lies in the $x y$-plane.
(6) If the point P is on the surface $\theta=0$, then P lies in the $x z$-plane.
