MAC 2233 Fall 2019

EXAM 3A

- A. Sign your bubble sheet on the back at the bottom in ink.
- B. In pencil, write and encode in the spaces indicated:
 - 1) Name (last name, first initial, middle initial)
 - 2) UF ID Number
 - 3) Section Number
- C. Under "special codes", code in the test ID number 3, 1.

1	2	•	4	5	6	7	8	9	0
ullet	2	3	4	5	6	7	8	9	0

- D. At the top right of your answer sheet, for "Test Form Code", encode A.
 - B C D E
- E. 1) This test consists of 13 four-point and 3 multiple choice questions and two pages (both sides) of free reponse questions worth 28 points. The test is counted out of 80 points
 - 2) The time allowed is 90 minutes.
 - 3) You may write on the test.
 - 4) Raise your hand if you need more scratch paper or if you have a problem with your test. DO NOT LEAVE YOUR SEAT UNLESS YOU ARE FINISHED WITH THE TEST.

F. KEEP YOUR BUBBLE SHEET COVERED AT ALL TIMES.

- G. When you are finished:
 - 1) Before turning in your test, check for transcribing errors. Any mistakes you leave in are there to stay.
 - 2) Bring your test, scratch paper, bubble sheet, and any tearoff sheets to your discussion leader or proctor to turn them in. Be prepared to show your UF ID card.
 - 3) Answers will be posted in CANVAS after the test. Grades will be posted within one week.

MAC 2233 — Fall 2019 — EXAM 3A

Multiple Questions are worth 4 points each.

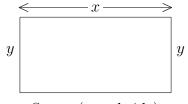
- 1. Given the function $y = x\sqrt{25 x^2}$, x = 0 is
 - A. a local maximum
 - B. a local minimum
 - C. an inflection point
 - D. absolute maximum
 - E. not in the domain of the function

- 2. Suppose f'' is continuous on $(-\infty, \infty)$. If f'(7) = 0 and f''(7) = -2, what can you say about f?
 - A. f has a local minimum at x = 7
 - B. f has a local maximum at x = 7
 - C. f has neither a maximim or a minimum at x = 7
 - D. f has an absolute minimum at x = 7
 - E. More information is needed to determine if f has a maximum or minimum at x = -7

- 3. If $f(x) = 3x \ln(x)$ then the function is increasing on which of the following intervals:
 - A. (e^{-1}, ∞) B. (1, e) C. (0, e) D. $(0, \infty)$ E. (0, 1)

MAC 2233 — Fall 2019 — EXAM 3A

- 4. Find the slope of the tangent to $2x^2e^y = e^{xy} + e$ at the point (1, 1)
 - A. 2 B. -3C. $\frac{1}{2}$ D. $-\frac{1}{3}$ E. Undefined


- 5. If $y = \frac{e^{3x}\sqrt{6+3x}}{(3x-1)^2}$. Find the slope of the tangent line at x = 1A. $\frac{e^3}{8}$ B. $\frac{3e^3}{4}$ C. $-\frac{3e^3}{4}$ D. $\frac{5}{4}$ E. $-\frac{e^3}{24}$
- 6. Find the absolute maximum and minimum values of $f(x) = \frac{\ln(x)}{x}$ on $[1, e^3]$. A. $\frac{1}{e}$ and $\frac{3}{e^3}$ B. e and $\frac{3}{e^3}$ C. e and $\frac{1}{e}$ D. $\frac{3}{e^3}$ and 0 E. $\frac{1}{e}$ and 0
- 7. Find the antiderivative of the following derivative that satisfies the given condition. $f(x) = \frac{x^2 - 7}{x^2}; F(3) = 5$ A. $F(x) = 1 - \frac{7}{x} + C$ B. $F(x) = x + \frac{7}{x} - \frac{1}{3}$ C. $F(x) = 1 - \frac{7}{x^2} - \frac{16}{3}$ D. $F(x) = \frac{x^3 - 7}{x^3} + C$ E. $F(x) = x + \frac{7}{x} + 5$

- 8. The position for an object is given by $s(t) = \ln(t^2 + 1)$, where s(t) is its distance in feet from a starting point after t seconds. Find the acceleration of the object after 2 seconds.
 - A. $\frac{2}{\ln 5}$ ft/sec² D. $-\frac{4}{25}$ ft/sec² B. $\frac{4}{5}$ ft/sec² C. $\frac{1}{5}$ ft/sec² E. $-\frac{6}{25}$ ft/sec²

- 9. The total cost function for a product is $C(x) = 40 2x + 0.1x^2$, $0 \le x \le 40$, where x is measured in thousands and C(x) is measured in hundreds of dollars. For what production levels x (in interval notation) is **average cost** $\bar{C}(x) = \frac{C(x)}{x}$ decreasing?
 - A. (0, 25) B. (10, 40) C. (0, 10) D. (20, 40) E. (0, 20)

- 10. During finals week, when is the final for MAC 2233 exam scheduled?
 - A. Saturday at 7:30 AM
 - B. Saturday at 12:30PM
 - C. Saturday at 5:30 PM
 - D. Monday at 7:30 AM
 - E. Monday at 5:30 PM

11. A homeowner wants to enclose a rectangular garden plot having an area of 2400 square feet. The fencing on the three sides of the plot are to be constructed of wood that costs \$2 per linear foot and the side facing the street is to be constructed of a decorative metal fencing that costs \$4 per linear foot. What dimensions will minimize the total cost of fencing?

Street (metal side)

A. x = 50 ft. and y = 48 ft.
B. x = 60 ft. and y = 40 ft.
C. x = 36 ft. and y = 48 ft.

D. x = 40 ft. and y = 60 ft.

E. x = 36 ft. and y = 36 ft.

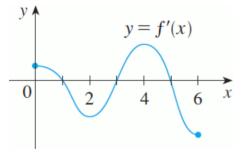
12. The relative extrema of $f(x) = \frac{(x+2)^2}{x}$ occur at which of the following x-values?

	ative minimum $x = $	relative maximum at $x =$				
А.	none	-2, 2				
В.	-2	2				
С.	-2, 2	none				
D.	2	-2				
Е.	-2, 2	0				

13. Use differentials to approximate $\sqrt{78}$

A.
$$9+3$$
 B. $9-\frac{1}{6}$ C. $9+\frac{1}{6}$ D. $9-\frac{1}{9}$ E. $9+\frac{1}{9}$

MAC 2233 — Fall 2019 — EXAM 3A


Section # _____ Name _____

UF ID # _____ Signature _____

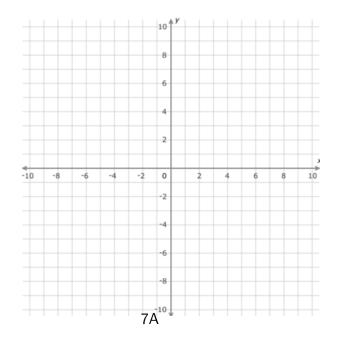
YOU MUST SHOW ALL WORK TO RECEIVE FULL CREDIT.

1. Two people start moving from the same point. Person A travels south at 3 m/s and Person B travels west at 4 m/s. At what rate is the distance between the two people increasing two seconds later?

2. The graph of the **derivative**, f'(x), of f(x) is shown below. Answer the following questions.

- (a) On what interval is f increasing?
- (b) On what interval is f decreasing?
- (c) List the critical points of f
- (d) At what value(s) of x does f have a local max?
- (e) At what value(s) of x does f have a local min?
- (f) On what interval is f concave up?
- (g) On what interval is f concave down?
- (h) What value(s) of x does f have a point of inflection?

3. Consider the function y = f(x) where $f(x) = \frac{(x-1)^3}{x^2}$ $f'(x) = \frac{(x-1)^2(x+2)}{x^3}$ $f''(x) = \frac{6(x-1)}{x^4}$


(a) What is the domain of f? What are the vertical and horizontal asymptotes of f?

(b) List the critical point(s) of f. On what interval is f increasing? decreasing?

(c) List the point(s) of inflection. On what interval is f concave up? concave down?

(d) At what point(s) does f have a local maximum? local minimum?

(e) Sketch the graph of f.

