- A rigid chamber is initially filled with 4.00 atm of N₂ gas and 3.00 atm of O₂ gas. After these react to form N₂O(g) and the chamber returns to its original temperature, the final pressure in the chamber is:
 - A) 3.0 atm
 - B) 4.0 atm
 - C) 5.0 atm
 - D) 6.0 atm
 - E) 7.0 atm
- 2) A mixture of Xe(g) and $O_2(g)$, formed by the complete decomposition of XeO₄(g), is collected over water at 34°C at a total pressure of 760 mmHg. If the vapor pressure of water is 40 mmHg at 34°C, what is the partial pressure of O_2 ?
 - A) 360 mmHg
 - B) 380 mmHg
 - C) 480 mmHg
 - D) 510 mmHg
 - E) 720 mmHg
- 3) If 1000. g of boiling water (at 100.°C) was placed in an 1800. g cast iron skillet initially at 25°C, and the final equilibrium temperature of the water and the skillet was 88°C, estimate the specific heat capacity of the skillet. Assume this is a closed system and that the specific heat capacity of water is 4.184 J/°C•g.
 - A) 0.247 J/°C∙g
 - B) 0.443 J/°C•g
 - C) 0.833 J/°C∙g
 - D) 0.452 J/°C∙g
 - E) 0.185 J/°C∙g
- 4) Which of the following is incorrect?
 - I. For n=2 the maximum electron capacity is 8
 - II. There are 3 different orbitals with n=2 and l=1
 - III. For n=3, the largest value of l is 1
 - IV. There can be two electrons in a configuration with quantum numbers n=1 and l=0
 - V. There can be one electron in each configuration with n=2 and m_s =+1/2
 - A) I and II
 - B) I, III, V
 - C) II, III, IV
 - D) III and V
 - E) Only V
- 5) Which are the correct quantum numbers for the electron removed to form Cu⁺?
 - A) 3, 0, 0
 - B) 4, 0, 0

- C) 3, 2, 0
- D) 4, 1, 0
- E) 4, 2, 0
- 6) Which of the following statements are true for the electronic configuration of magnesium?
 - I. The 2s electrons are more difficult to remove than the 3s
 - II. The 2s electrons shield the 3s electrons from nuclear charge
 - III. The 2s electrons feel a higher effective nuclear charge than the 3s electrons
 - A) Only I
 - B) Only II
 - C) I and II
 - D) II and III
 - E) I, II, and III
- 7) Which statement is incorrect regarding internal energy (U, E) and the first law of thermodynamics?
 - A) The first law of thermodynamics states that energy must be conserved.
 - B) When the system gains heat and performs work, then Δ {U, E} for the system must be positive.
 - C) The first law of thermodynamics does not imply that heat can't be converted to work.
 - D) When the system loses heat and performs work, then Δ {U, E} for the system must be negative.
 - E) When its Δ {U,E} increases, then the system must gain heat or have work performed on it, or both.
- 8) Deterioration of buildings, bridges, and other structures through the rusting of iron costs millions of dollars a day. The enthalpy of formation of rust, Fe₂O₃(s), is -826.0 kJ/mol. How much heat is released (in kJ) when 0.500 kg of Fe reacts with 200. g of O₂, forming Fe₂O₃(s)?
 - A) 3442 kJ
 - B) 3696 kJ
 - C) 6864 kJ
 - D) 7392 kJ
 - E) 1650 kJ
- 9) When 50.0 ml of 0.200 M AgNO₃ and 50.0 ml of 0.100 M CaCl₂, both at 25.0°C, are reacted in a coffee-cup calorimeter, the temperature of the reacting mixture increases to 26.0°C. Calculate ΔH in kJ per mole of AgCl produced. Assume the density of the solution is 1.05 g/ml and the specific heat capacity of the solution 4.20 J/g°C.
 - A) -88 kJ/mol
 - B) –42 kJ/mol
 - C) -440 kJ/mol
 - D) –22 kJ/mol
 - E) –44 kJ/mol

10) The rate law for 2 NO(g) + $O_2(g) \rightarrow 2$ NO₂(g) was experimentally determined to be rate = $k[NO]^2[O_2]$. Based on this information, which of the following are plausible mechanisms for this reaction?

Only I Only II I and III II and III I, II, and III

1:	2 NO(g) \rightleftharpoons N ₂ (g) + O ₂ (g) (slow equilibrium step)	A)
	$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$ (fast second step)	B)
11:	2 NO(g) \rightleftharpoons N ₂ O ₂ (g) (fast equilibrium step)	C)
	$N_2O_2(g) + O_2(g) \rightarrow 2 NO_2(g)$ (slow second step)	D)
III:	$2 \text{ NO(g)} + O_2(g) \rightarrow 2 \text{ NO}_2(g) \text{ (one step)}$	E)

11) The growth of Pseudomonas bacteria is a first-order

process with rate constant k = 0.035 min⁻¹ at 37°C. The time it takes to approximately double the population of these bacteria at 37° C is

- A) 5.0 minutes
- B) 10. minutes
- C) 20. minutes
- D) 30. minutes
- E) 60. Minutes

12) Select the true statement(s)

- I. Photons of green light have greater energy than photons of red light
- II. The light emitted from an n=4 to n=2 transition will have greater energy than light from an n=3 to n=1 transition
- III. The energy of a photon is directly related to its frequency and inversely related to its wavelength
- IV. There are only 2 subshells associated with the n=2 energy level
- V. In accordance with Hund's rule, the ground state phosphorous atom contains 3 unpaired electrons in the p sublevel
- A) I and II
- B) II, III, and IV
- C) I and III
- D) III only
- E) I, III, IV, and V
- 13) If 150. grams of iron (0.450 J/g°C) at 100°C is combined with 150. grams of water at 20°C in an insulated container, what will be the final temperature of the water?
 - A) 10.4°C
 - B) 27.8°C
 - C) 30.8°C
 - D) 34.5°C
 - E) 60.0°C

14) Find the heat of formation of gaseous HCl

H = -91.8 kJ
H = -628.8 kJ
H = -176.2 kJ

- A) -92.3 kJ
- B) -184.6 kJ
- C) -87.6 kJ
- D) -445 kJ
- E) -574.4 kJ
- 15) A pure gold ring (C=0.128 J/g°C) and pure silver ring (C=0.235 J/g°C) have a total mass of 15.3g. The two rings are heated to 62.1°C and dropped into a 13.1mL of water at 20.9°C. When equilibrium is reached, the temperature of the water is 22.9°C. What was the mass of the gold ring?
 - A) 17.6 g
 - B) 10.3 g
 - C) 7.5 g
 - D) 5.2 g
 - E) 3.4 g

16) Consider the reaction

$C_{12}H_{22}O_{11}(s)+12O_2(g)\rightarrow 12CO_2(g)+11H_2O(l)$

in which 10.0 g of sucrose, $C_{12}H_{22}O_{11}$, was burned in a bomb calorimeter with a heat capacity of 7.50 kJ/oC. The temperature increase inside the calorimeter was found to be 22.0°C. What is the heat of this reaction per mole of sucrose?

- A) 5649 kJ/mol
- B) 56507 kJ/mol
- C) 1650 kJ/mol
- D) 4125 kJ/mol
- E) 3300 kJ/mol

17) Find the rate law for the following reaction mechanism

 $HNO_2 + H^+ -> H_2O + NO^+ (fast)$ $NH_4^+ -> NH_3 + H^+ (fast)$ $NO^+ + NH_3 -> NH_3NO^+ (slow)$ $NH_3NO^+ -> H_2O + H^+ + N_2 (fast)$

- A) Rate = $k [NO^+] [NH_3]$
- B) Rate = k [NO⁺] [NH_4^+] [H^+]⁻¹
- C) Rate = k $[NO^+] [NH_4^+] [H^+]$
- D) Rate = k [HNO₂] [NH₄⁺] [H₂O]⁻¹
- E) Rate = k [NH₃] [H⁺] [HNO₂] [H₂O]⁻¹