

This review, produced by the Broward Teaching Center, contains a collection of questions which are representative of the type you may encounter on the exam. Other resources made available by the Teaching Center include:

- Walk-In tutoring at Broward Hall
- Private-Appointment, one-on-one tutoring at Broward Hall
- Walk-In tutoring in LIT 215
- Supplemental Instruction
- Video resources for Math and Science classes at UF
- Written exam reviews and copies of previous exams

The teaching center is located in the basement of Broward Hall:

You can learn more about the services offered by the teaching center by visiting https://teachingcenter.ufl.edu/

MAC 2311 Exam 2 Review

1. Calculate the following derivatives:

(a)
$$\frac{d}{dx}e^3$$

(c)
$$\frac{d}{dx} \frac{1-x}{\sqrt{x}}$$

(b)
$$\frac{d}{dx}(\pi x^2)^{23}$$

(d)
$$\frac{d}{dx} 7^x 49^x$$

- 2. Evaluate the limit $\lim_{h\to 0} \frac{(27+h)^{2/3}-9}{h}$.
- 3. Find the equation for the tangent line to $f(t) = \frac{t}{e^t 1}$ at t = 1.
- 4. Which of the following derivatives requires the product or quotient rules? Which do not? Compute the derivatives.

(a)
$$\frac{d}{dx} \pi^3 x^2$$

(d)
$$\frac{d}{dx} \frac{(e^x + 1)^2}{e^{-x}}$$

(b)
$$\frac{d}{dx} \frac{x^{1/3}}{e}$$

(e)
$$\frac{d}{dx} \frac{(\sqrt{x} - x)^2}{x^{5/2}}$$

(c)
$$\frac{d}{dx} \frac{e^{2x} - 7}{e^{x+1}}$$

(f)
$$\frac{d}{dx} \frac{(e^x + x)^2}{e^{-x}}$$

- 5. Suppose f(x) is a differentiable function such that $f(\pi) = \frac{3\pi}{4}$ and $f'(\pi) = 2018$. Consider the composite function $g(x) = \cot(f(x))$.
 - (a) Calculate $g'(\pi)$
 - (b) Suppose additionally that f is an even function. Calculate $g'(-\pi)$
 - (c) Suppose additionally that f is an odd function. Calculate $g'(-\pi)$
- 6. Find the equation of the normal line to $f(x) = x \cot(x)$ at $x = -\frac{\pi}{6}$.

MAC 2311 Exam 2 Review

- 7. Find the slope for each of the following functions at the given point:
 - (a) $f(x) = \cos(x)$ at $x = \pi/4$.
 - (b) $g(x) = \ln(x 1)$ at x = e.
 - (c) $h(x) = \frac{1}{x^2}$ at x = 2.
- 8. Let $f(x) = e^{\frac{1}{3}x^3 x}$.
 - (a) At what points (x, y), if any, does f(x) have a horizontal tangent line?
 - (b) Find the equation for the tangent line to f(x) at x = 0.
- 9. At how many points does the curve $2y^3+y^2-y^5=x^4-2x^3+x^2$ have horizontal tangent lines?
- 10. Follow the steps below to find the derivative of $f(x) = \tan^{-1}(e^{x^2})$
 - (a) Begin by writing y for f(x), i.e., $y = \tan^{-1}(e^{x^2})$
 - (b) Observe that the result from part (a) is equivalent to $tan(y) = e^{x^2}$.
 - (c) Differentiate the expression from part (b) implicitly, and find f'(x).
 - (d) Does f(x) have any horizontal tangent lines? If so where?
- 11. Let $f(x) = \frac{(x^2+4)\cos(\pi x)e^{3x}}{\sin(3\pi x)\sqrt{x+3}}$. Find f'(x). Hint: use logarithmic differentiation
- 12. Calculate the following derivatives.

(a)
$$\frac{d}{dx}\ln(\ln(x))$$

(b)
$$\frac{d}{dx} \ln(\ln(\ln(x)))$$

(c)
$$\frac{d}{dx} \ln(\ln(\ln(\ln(x))))$$

MAC 2311 Exam 2 Review

- 13. Evaluate the following derivatives.
 - (a) $\frac{d}{dx} \sin^{-1}(2\sqrt{x})$

(c) $\frac{d}{dx} 2x \tan^{-1}(x)$

(b) $\frac{d}{dx} \sec^{-1}(x^2)$

- (d) $\frac{d}{dx}\sqrt{\cos^{-1}(x)}$
- 14. Evaluate the limit $\lim_{h \to 0} \frac{\cos^{-1}\left(\frac{\sqrt{2}}{2} + h\right) \frac{\pi}{4}}{h}$.
- 15. 7
 - (a) $f(x) = ein^{-1}(2x 1)$
 - (b) $Y(x) = (1 + x^2) \text{fan}^{-1}(x)$
 - (c) $Z(x) = fan^{-1}(sin(x))$
- 16. 7
 - (a) $f(x) = \csc(5x)$
 - (b) $g(x) = -4\sin^2(2x)$
 - (c) $f(x) = 2x\cot(x)$
 - (d) $g(x) = \cos^3(2x^2-1)$

MAC 2311 Review - Exam 2

1) Differentiate the following functions.

$$f(x) = x\sqrt{x^2 - 3}$$

$$g(x) = \frac{x^3 + 2}{x^2 + 1}$$

$$h(x) = (3x^2 - 1)\left(x^2 - \frac{1}{x}\right)$$

$$r(x) = \frac{x^3 + 2x^2 + x - 1}{\sqrt{x}}$$

2) Differentiate the following functions:

a)
$$h(x) = \frac{x^2 - x + 1}{(x - 1)^{2/3}}$$

b)
$$k(x) = \begin{cases} -\frac{x^2 - 1}{x + 2}, & x > -1\\ x + 2, & x \le -1 \end{cases}$$

c)
$$n(x) = \sin^2(\cos(4x))$$

3) Find...

$$\lim_{h \to 0} \frac{\sqrt[5]{x+h} - \sqrt[5]{x}}{h}$$

4) Given $f(x) = 3x^2 \sqrt[3]{4 - x^2}$

a) Find
$$\frac{df}{dx}$$

b) Where are the horizontal and vertical tangents?

5) For the following equation:

$$5x^2y - y^3 = 1 + x^2$$

a) Find
$$\frac{dy}{dx}$$
.

b) Find the equation of the tangent line to the curve at the point (1,2).

6) Find the derivatives of the following functions:

a)
$$f(x) = \frac{x}{x+3}$$

b)
$$g(x) = \sin(3x)$$

7) For what values of x does the function $g(x) = x + 2 \sin(x)$ have horizontal tangent lines?

Suppose $f(x) = ax^2 + bx + c$ and that the tangent lines at x = 1 and x = -1 have slopes -8 and -1 respectively, and that the point (2,15) is a point on the graph. What are the values of a,b, and c?

Find the values of a so that the tangent line to $y = x^2 - 2\sqrt{x} + 1$ is perpendicular to the line ay + 2x = 2 at x = 4.

10) Find the x values where the curve represented by the following equation has horizontal tangent lines.

$$x^2 + xy + y^2 = 6$$

11) Take the derivatives of the following functions [using logarithmic differentiation]:

a)
$$f(x) = 5^{\tan^2(x)}$$

b)
$$g(x) = x^{\sin(x)}$$

c)
$$h(x) = \frac{e^{3x+1}(x^2+3)^3}{\sqrt{2x-1}}$$