MAC2313, Calculus III Exam 2 Review

- 1. Find and sketch the domain of the function.
- (1) $f(x,y) = \ln(x+y+1)$ (2) $f(x,y) = \sqrt{4-x^2-y^2} + \sqrt{1-x^2}$
- 2. Show that the limit does not exist.

(1)
$$\lim_{(x,y)\to(1,1)} \frac{xy^2 - 1}{y - 1}$$
 (2) $\lim_{(x,y)\to(0,0)} \frac{x^3 + y^3}{xy^2}$

3. Evaluate the following limits.

(1)
$$\lim_{(x,y)\to(1,1)} \frac{x^3 y^3 - 1}{xy - 1}$$
(2)
$$\lim_{(x,y)\to(2,2)} \frac{x + y - 4}{\sqrt{x + y} - 2}$$
(3)
$$\lim_{(x,y)\to(0,0)} \frac{e^y \sin(2x)}{x}$$
(4)
$$\lim_{(x,y)\to(0,0)} (x^2 + y^2) \ln(x^2 + y^2)$$

4. The contour map of a function f is shown.

- (1) Is $f_x(3,2)$ positive or negative?
- (2) Which is greater, $f_y(2,1)$ or $f_y(2,2)$?

5. Consider the function $f(x,y) = \begin{cases} \frac{\sin(xy)}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$.

- (1) Is f continuous at (0,0)?
- (2) Is f differentiable at (0,0)?

6. Consider the function
$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 1 & (x,y) = (0,0) \end{cases}$$

- (1) Is f continuous at (0,0)?
- (2) Can you redefine the function so that f continuous at (0,0)?

7. Find all the first and second order partial derivatives of $f(x, y) = x^y$.

8. Find the linear approximation of the function $f(x, y, z) = x^3 \sqrt{y^2 + z^2}$ at the point (2, 3, 4) and use it to estimate the number $(1.98)^3 \sqrt{(3.02)^2 + (4.01)^2}$.

9. Use differentials to estimate the amount of metal in a closed cylindrical can that is 30 cm high and 5 cm in radius if the metal in the top and the bottom is 0.3 cm thick and the metal in the sides is 0.05 cm thick.

10. Find
$$\frac{\partial z}{\partial x}$$
 and $\frac{\partial z}{\partial y}$ at $(0, 1, 2)$ if $x - yz + \cos(xyz) = 2$.

11. Find an equation of the tangent plane to the surface $z = x \sin(x+y)$ at the point (-1, 1, 0).

12. Let
$$z = \sqrt{x^2 + y^2}$$
. Show that $\frac{\partial^2 z}{\partial x^2} \frac{\partial^2 z}{\partial y^2} = \left(\frac{\partial^2 z}{\partial x \partial y}\right)^2$.

13. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$ when r = 2 and $\theta = \pi/2$ if w = xy + yz + zx, and $x = r \cos \theta$, $y = r \sin \theta$, $z = r\theta$.

14. Find the directional derivative of $f(x, y) = x^2 e^{-y}$ at the point (-2, 0) in the direction toward the point (2, -3).

15. Let $f(x, y) = \ln(1 + xy)$.

(1) Find the unit vectors that give the direction of steepest ascent and steepest descent at (1, 2).

(2) Find a unit vector that points in a direction of no change at (1, 2).

16. Find equations of (1) the tangent plane and (2) the normal line to the surface xy + yz + zx = 5 at the point (1, 2, 1).

17. Where does the normal line to the paraboloid $z = x^2 + y^2$ at the point (1, 1, 2) intersect the paraboloid a second time?

18. The plane y + z = 3 intersects the cylinder $x^2 + y^2 = 5$ in an ellipse. Find parametric equations for the tangent line to this ellipse at the point (1, 2, 1).

19. Find the points on the surface $2x^3 + y - z^2 = 5$ at which the tangent plane is parallel to the plane 24x + y - 6z = 3.

20. Let $f(x, y) = 3x^2 - 3xy^2 + y^3 + 3y^2$. Find the critical points of f and classify each critical point.

21. Find the local maximum and minimum <u>values</u> and saddle point(s) of the function $f(x, y) = (x^2 + y^2)e^{-x}$.

22. Find the absolute maximum and minimum values of (1) $f(x, y) = x^2 + y^2 - 2x$ on the closed triangular region with vertices (2,0), (0,2), and (0,-2) (2) $f(x,y) = (x^2 + 2y^2)e^{-x^2-y^2}$ on the disk $\{(x,y) \mid x^2 + y^2 \le 4\}$ (3) $f(x,y) = e^{-xy}$ on $\{(x,y) \mid x^2 + 4y^2 \le 1\}$ 23. Find the maximum and minimum values of

(1) f(x, y, z) = x + y + z subject to $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$

(2) $f(x, y, z) = x^2 + y^2 + z^2$ subject to x - y = 1 and $y^2 - z^2 = 1$

24. Find the point(s) on the surface $x^2 - yz = 1$ that are closest to the origin.

25. Find the point on the ellipse $x^2 + 6y^2 + 3xy = 40$ with the largest x coordinate.

26. True or False:

(1) There exists a function f with continuous second partial derivatives such that $f_x = x + y^2$ and $f_y = x - y^2$.

(2) If $f_x(a, b)$ and $f_y(a, b)$ both exist, then f is differentiable at (a, b).

(3) If f(x, y) is differentiable, then the rate of change of f at the point (a, b) in the direction of \vec{w} is $\nabla f(a, b) \cdot \vec{w}$.

(4) If $f_x(a,b) = 0$ and $f_y(a,b) = 0$, then f must have a local maximum or minimum at (a,b).

(5) If f(x,y) is differentiable and f has a local minimum at (a,b), then $D_{\vec{u}}f(a,b) = 0$ for any unit vector \vec{u} .